首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We have isolated from bovine colostrum the lactose analog GalNAcbeta1-->4Glc. The enzymatic basis for its occurrence was studied by assaying the activities of GlcNAcbeta-R beta4-N-acetylgalactosaminyltransferase (beta4-GalNAcT) and GlcNAcbeta-R beta4-galactosyltransferase (beta4-GalT) in primary milk and several lactating bovine mammary gland fractions. As the beta4-GalNAcT, which appears to be tightly membrane bound, is induced by the milk protein alpha-lactalbumin (alpha-LA) to act on Glc, it is concluded that beta4-GalNAcT is responsible for the synthesis of GalNAcbeta1-->4Glc in the gland. The comparatively low level (15-20 mg/l) at which this disaccharide is produced may be due to the relatively poor interaction of beta4-GalNAcT with alpha-LA as well as to the fact that alpha-LA does not inhibit the action of the enzyme on N-acetylglucosaminides.  相似文献   

2.
Affinity Gel-UDP was utilized to purify GlcNAc:beta1,4Gal/GalNAc transferases (Ts) from human lymphoma spleen, ovarian tumor, and ovarian cancer sera. Mn(2+) was found to be an absolute requirement for activity. Two molecular species containing both beta1,4Gal/GalNAc-T activities were discernible when the purified ovarian tumor microsomal enzyme was subjected to Sephacryl S-100 HR column chromatography as well as native polyacylamide gel-electrophoresis. Acceptor specificity studies of the affinity-purified lymphoma spleen and ovarian tumor microsomal enzymes and the conventionally purified, as well as the cloned, bovine milk GlcNAc:beta1,4Gal-Ts using a number of synthetic acceptors showed that the beta(1,6)-linked GlcNAc moiety to alpha-GalNAc was the most efficient acceptor. As compared to the purified milk enzyme, the recombinant form exhibited sixfold GlcNAc:beta1,4 GalNAc-T activity and up to eightfold GlcNAc6SO3beta-:beta1,4Gal-T activity. Further, the recombinant enzyme catalyzed the transfer of GalNAc to the terminal beta-linked GlcNAc6SO3 moiety. Alpha-lactalbumin (alpha-LA) inhibited up to 85%, the transfer of Gal to the GlcNAc moiety linked either to Man or GlcNAc. On the contrary, alpha-LA had no significant influence on the transfer of GalNAc to the above acceptors. alpha-LA had no appreciable effect on the recombinant enzyme, except for the transfer of Gal or GalNAc to Glc. Both alpha- and beta-glucosides, as well as alpha-N-acetylglucosaminide, did not serve as acceptors.  相似文献   

3.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

4.
Six strains of Bacteroides fragilis were examined and all found to produce endo-beta-galactosidase, an enzyme that hydrolyses internal beta-galactosidic linkages of oligosaccharides belonging to the poly-N-acetyl-lactosamine series, with the common structure GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc/Glc. The enzyme was produced without the addition of an inducer such as keratan sulphate. It was purified 7000-fold from the culture supernatant and obtained with a yield 4-10-fold greater than from sources described previously. The specificity of the enzyme towards bovine corneal keratan sulphate, milk oligosaccharides and the glycolipids lacto-N-neotetraosylceramide and lacto-N-tetraosylceramide closely resembled that of the endo-beta-galactosidase isolated from Escherichia freundii. A novel observation was that both enzymes hydrolysed the type 2 sequence, Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc, at about twice the rate of the type 1 isomer, Gal beta 1 leads to 3GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc. Because of the ease of purification of the enzyme and high yield in the absence of contaminating glycosidases and proteinases, Bacteroides fragilis is a valuable source of endo-beta-galactosidase for the structural analysis of carbohydrate chains.  相似文献   

5.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

6.
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-- >4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-- >2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1- ->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3- FucT resembles human FucT V and VI rather than other known FucTs. N- ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-- >4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-- >2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-- >3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2- FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.   相似文献   

7.
Glucosidase II is an endoplasmic-reticulum-localized enzyme that cleaves the two internally alpha-1,3-linked glucosyl residues of the oligosaccharide Glc alpha 1----2Glc alpha 1----3Glc alpha 1----3Man5-9GlcNAc2 during the biosynthesis of asparagine-linked glycoproteins. We have purified this enzyme to homogeneity from the lactating bovine mammary gland. The enzyme is a high-mannose-type asparagine-linked glycoprotein with a molecular mass of approx. 290 kDa. Upon SDS/polyacrylamide-gel electrophoresis under reducing conditions, the purified enzyme shows two subunits of 62 and 64 kDa, both of which are glycosylated. The pH optimum is between 6.6 and 7.0. Specific polyclonal antibodies raised against the bovine mammary enzyme also recognize a similar antigen in heart, liver and the mammary gland of bovine, guinea pig, rat and mouse. These antibodies were used to develop a sensitive enzyme-linked immunosorbent assay for glucosidase II.  相似文献   

8.
Tammar wallaby (Macropus eugenii) mammary glands contain a UDP-GlcNAc:Gal beta 1----3Gal beta 1----4Glc beta 1----6-N-acetylglucosaminyltransferase (GlcNAcT) whose activity has been characterized with respect to the effect of pH, apparent Km for acceptor, effects of bivalent metal ions, acceptor specificity and identity of products. The enzyme did not show an absolute requirement for any bivalent metal ion but its activity was increased markedly by Mg2+, Ca2+ and Ba2+ and, to a lesser extent, by Mn2+. When Gal beta 1----3Gal beta 1----4Glc was used as acceptor, the product was Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----4Glc. With Gal beta 1----3Gal beta 1----3Gal beta 1----4Glc as acceptor, the product was shown, by 1H-NMR spectroscopy and exo-beta-galactosidase digestion, to be a novel pentasaccharide with the structure Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----3Gal beta 1----4Glc, suggesting that the enzyme recognises the non-reducing end of the acceptor substrate, rather than the reducing end.  相似文献   

9.
10.
The O-antigen chain from the lipopolysaccharide of Helicobacter pylori strain UA861 was determined to be composed of an elongated type 2 N - acetyllactosamine backbone, -[-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-(1- ]n-->, with approximately half of the GlcNAc units carrying a terminal alpha-d-Glc residue at the O -6 position. The O-chain of H.pylori UA861 was terminated by a N -acetyllactosamine [beta-D-Gal-(1-->4)-beta-D- GlcNAc] (LacNAc) epitope and did not express terminal Lewis X or Lewis Y blood-group determinants as previously found in other H.pylori strains. The absence of terminal Lewis X and Lewis Y blood-group epitopes and the replacement of Fuc by Glc as a side chain in the O- chain of H.pylori UA861 represents yet another type of lipopolysaccharide structure from H.pylori species. These structural differences in H.pylori lipopolysaccharide molecules carry implications with regard to possible different pathogenic events between strains and respective hosts.   相似文献   

11.
Carbohydrates were extracted from the milk of a beluga, Delphinopterus leucas (family Odontoceti), and two Minke whales, Balaenoptera acutorostrata (Family Mysticeti), sampled late in their respective lactation periods. Free oligosaccharides were separated by gel filtration and then neutral oligosaccharides were purified by preparative thin layer chromatography and gel filtration, while acidic oligosaccharides were purified by ion-exchange chromatography, gel filtration and high performance liquid chromatography (HPLC). Their structures were determined by 1H-NMR. In one of the Minke whale milk samples, lactose was a dominant saccharide, with Fuc(alpha1-2)Gal(beta1-4)Glc(2'-fucosyllactose), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc(lacto-N-neotetraose), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc(A-tetrasaccharide), Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose), Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl lacto-N-neotetraose), Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LST c) and Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (sialyl para lacto-N-neohexaose) also being found in the milk. The second Minke whale sample contained similar amounts of lactose, 2'-fucosyllactose and A-tetrasaccharide, but no free sialyl oligosaccharides. Sialyl lacto-N-neotetraose and sialyl para lacto-N-neohexaose are novel oligosaccharides which have not been previously reported from any mammalian milk or colostrum. These and other oligosaccharides of Minke whale milk may have biological significance as anti-infection factors, protecting the suckling young against bacteria and viruses. The lactose of Minke whale milk could be a source of energy for them. The beluga whale milk contained trace amounts of Neu5Ac(alpha2-3)Gal(beta1-4)Glc(3'-N-acetylneuraminyllactose), but the question of whether it contained free lactose could not be clarified. Therefore, lactose may not be a source of energy for suckling beluga whales.  相似文献   

12.
Carbohydrates were extracted from a sample of coati milk and the component oligosaccharides were separated and partially purified by gel filtration and preparative thin layer chromatography. Their structures were determined by 1H-NMR. Fuc alpha 1-->2Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4Glc Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Fuc alpha 1-->2Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc The two pentasaccharides are novel sugars. In addition, higher oligosaccharides, whose core units were lacto-N-neohexaose, were found in coati milk. Free lactose constituted only about one-third of the total free milk saccharides. The results are discussed in terms of comparisons with the milk sugars of bears and other species.  相似文献   

13.
Two trisaccharides, and a pentasaccharide were obtained from bovine colostrum. Their chemical structures were determined by using methylation and 13C-NMR analyses as follows: GalNac alpha 1-3Gal beta 1-4Glc, Gal alpha-1-3Gal beta 1-4Glc, GaL beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc. GalNAc alpha 1-3Gal beta 1-4Glc, which was identified in this study, is a novel oligosaccharide from natural sources. Gal alpha 1-3Gal beta 1-4Glc and Gal beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc (lacto-N-novopentaose) have been already found in ovine colostrum, and in horse colostrum and marsupial milk, respectively.  相似文献   

14.
Tammar wallaby (Macropus eugenii) mammary glands contain two galactosyltransferases of which the first, 4 beta GalT, is a UDP-galactose:N-acetylglucosaminyl beta 1----4-galactosyltransferase equivalent to the A protein of the lactose synthase of eutherian mammals. The second enzyme, 3 beta GalT, is a UDP-galactose:lactose beta 1----3-galactosyltransferase, not previously identified in mammary glands of any species, which catalyses the formation of Gal beta 1----3 Gal beta 1----4 Glc from lactose. The two enzyme activities, as well as the lactose synthase activity, have been characterised with respect to the effects of pH, apparent Km values, effects of bovine and tammar alpha-lactalbumins, heat sensitivity and identity of products. Studies on the substrate specificity and heat sensitivity of the 3 beta GalT activity suggest that this enzyme may catalyse the beta-galactosylation of Gal beta 1----3Gal beta 1----4Glc as well as of lactose. The activity of the 3 beta GalT, unlike that of the 4 beta GalT, changes dramatically during the course of lactation in parallel with similar changes in the carbohydrate content of tammar milk.  相似文献   

15.
Glucosidase I, the first enzyme involved in the post-translational processing of N-linked glycoproteins, was purified to homogeneity from the lactating bovine mammary tissue. The enzyme was extracted by differential treatment of the microsomal fraction with Triton X-100 and Lubrol PX. The solubilized enzyme was subjected to affinity chromatography on Affi-Gel 102 with N-5-carboxypentyldeoxynojirimycin as ligand and DEAE-Sepharose CL-6B chromatography. Purified glucosidase I shows a molecular mass of 320-330 kDa by gel filtration on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis under reducing conditions indicates a single band of approx. 85 kDa, indicating that the native enzyme is probably a tetrameric protein. Several criteria, including pH optimum of 6.6-7.0, specific hydrolytic action towards Glc3Man9GlcNAc2, to release the terminally alpha-1,2-linked glucosyl residue, and total lack of activity towards Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 saccharides, which are the biological substrates for processing glucosidase II, and 4-methylumbelliferyl alpha-D-glucopyranoside show the non-lysosomal origin and the processing-specific role of the purified enzyme. The enzyme does not require any metal ions for its activity. Hg2+, Ag+ and Cu2+ are potent inhibitors of the enzyme; this inhibition can be reversed by adding an excess of dithiothreitol. Among the saccharides tested, kojibiose (Glc alpha 1----2Glc) was inhibitory to the enzyme. Polyclonal antibodies raised against the enzyme in rabbit were found to be specific for glucosidase I, as revealed by Western-blot analysis and by immunoadsorption with Protein A-Sepharose. Anti-(glucosidase I) antibodies were cross-reactive towards a similar antigen in solubilized microsomal preparations from liver, mammary gland and heart from the bovine, guinea pig, rat and mouse.  相似文献   

16.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   

17.
1. Three neutral oligosaccharides were obtained from horse colostrum by ion-exchange, activated charcoal column and preparative paper chromatographies. 2. The following structures were elucidated by methanolysis, methylation analysis and 75 MHz 13C-NMR spectroscopy; Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (HM-3a), Gal beta 1-4GlcNAc beta 1-6Gal beta 1-4Glc (HM-3b) and Gal beta 1-4GlcNAc beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc (HM-5). 3. HM-3a and HM-5 have been found in human milk, named as lacto-N-neotetraose and lacto-N-neohexaose, respectively. HM-3b has been isolated from goat milk. 4. An homology and heterogeneity were assumed among the following animal species' milk oligosaccharides: horse, human, goat and tammar wallaby.  相似文献   

18.
In order to assess the function of the different human UDP-Gal:GlcNAc beta4-galactosyltransferases, the cDNAs of two of them, beta4-GalT I and beta4-GalT V, were expressed in the baculovirus/insect cell expression system. The soluble recombinant enzymes produced were purified from the medium and used to determine their in vitro substrate specificities. The specific activity of the recombinant beta4-GalT V was more than 15 times lower than that of beta4-GalT I, using GlcNAc beta-S-pNP as an acceptor. Whereas beta4-GalT I efficiently acts on all substrates having a terminal beta-linked GlcNAc, beta4-GalT V appeared to be far more restricted in acceptor usage. Beta4-GalT V acts with high preference on acceptors that contain the GlcNAc beta1-->6GalNAc structural element, as found in O-linked core 2-, 4- and 6-based glycans, but not on substrates related to V-linked or blood group I-active oligosaccharides. These results suggest that beta4-GalT V may function in the synthesis of lacNAc units on O-linked chains, particularly in tissues which do not express beta4-GalT I, such as brain.  相似文献   

19.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4Glc) and isoglobotetraose (GalNAcbeta1-->3Galalpha1-->3Galbeta1-->4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant beta-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

20.
Carbohydrates were extracted from hooded seal milk, Crystophora cristata (family Phocidae). Free oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and preparative thin layer or paper chromatography and their structures determined by 1H-NMR. The hooded seal milk was found to contain inositol and at least nine oligosaccharides, most of which had lacto-N-neotetraose or lacto-N-neohexaose as core units, similar to those in milk of other species of Carnivora such as bears (Ursidae). Their structures were as follows: Gal(beta1-4)Glc (lactose); Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-fucopentaose IV); Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(1-4)Glc (lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose a); Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose b); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (difucosyl lacto-N-neohexaose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (monofucosyl para lacto-N-neohexaose). Milk of the Australian fur seal, Arctophalus pusillus doriferus (family Otariidae) contained inositol but no lactose or free oligosaccharides. These results, therefore, support the hypothesis that the milk of otariids, unlike that of phocids, contains no free reducing saccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号