首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monophoton counting technique was used to measure nanosecond time-resolved fluorescence emission spectra of 2-p-toluidino-naphthalene-6-sulfonate (2,6 p-TNS) adsorbed to lipid bilayer vesicles. A time-dependent red shift in the emission maximum was observed and the rate of this red shift was shown to be temperature dependent. Analysis of fluorescence decay curves obtained at different emission wavelengths indicates that the time-dependent spectral shifts are due to an excited-state reaction such as solvent relaxation or an excited-state interaction between the chromophore and a polar residue of the phospholipid.  相似文献   

2.
The binding of the fluorescent probe 4,4'-bis[8-(phenylamino)naphthalene-1-sulfonate] (bis-ANS) to human alpha- and gamma-thrombins was investigated. Bis-ANS binds in a 1:1 complex to both forms of the enzyme, with Kd = 14.8 +/- 2.2 microM and 5.8 +/- 1.0 microM for alpha- and gamma-thrombin, respectively, at pH 7.0 [25 mM tris(hydroxymethyl)aminomethane, 0.15 M NaC1]. Fluorescence changes upon complexation included a considerable (approximately 30-nm) blue shift in the fluorescence emission maximum as well as a dramatic increase in the fluorescence emission intensity: a 70-fold enhancement was observed with alpha-thrombin vs. a approximately 220-fold enhancement with gamma-thrombin. Proflavin was not displaced upon bis-ANS binding. The unknown thrombin effectors ATP, Ca(II)ATP, Co(III)ATP, phosphate, and pyrophosphate bound with enhancement of the fluorescence of the bis-ANS-alpha-thrombin complex. The two inhibitors benzamidine and p-chlorobenzylamine as well as heparin caused decreases in bis-ANS-thrombin fluorescence: valerylamidine had no effect on the fluorescence of the bis-ANS-thrombin complex. Kinetic measurements with two chromogenic substrates, S-2238 and S-2160, indicated that bis-ANS acts as a partial noncompetitive inhibitor of thrombin amidase activity. The kinetic evidence combined with the ligand binding results suggests that bis-ANS does not overlap the catalytic site. The fluorophore ANS complexed with equal affinity to both alpha- and gamma-thrombins (Kd = 24 +/- 4 microM); however, the gamma-thrombin-ANS complex emission at 470 nm was enhanced 26% more than that for the alpha form.  相似文献   

3.
Interactions of dimeric Trimeresurus flavoviridis (the Habu snake) phospholipase A2 (PLA2), des-octapeptide(1-8)-PLA2 (L-fragment) (14% of PLA2 activity), and p-bromophenacyl bromide (BPB)-inactivated PLA2 (BP-PLA2) with dyes, namely, proflavine, 1-anilinonaphthalene-8-sulfonate (Ans), and 2-toluidinylnaphthalene-6-sulfonate (Tns), were investigated. All dyes were bound in a 1:1 molar ratio to the subunit of the proteins. Proflavine was bound most strongly to PLA2 and Ans and Tns were bound to the three proteins with comparable affinities. Capabilities of the dyes for inhibiting alkylation of His-47 of PLA2 with BPB were in the following order: Ans greater than proflavine greater than Tns. Fluorescences of Ans and Tns that were increased in the presence of PLA2 were further greatly enhanced upon the addition of Ca2+, with concomitant formation of the ternary complexes. Ca2+, however, inhibited, competitively or noncompetitively, the bindings of the dyes to PLA2. All dyes were bound to the active site of PLA2 but with different orientations. Inactivation of L-fragment with BPB was inhibited by the dyes in the following order: Tns greater than proflavine approximately Ans. Addition of Ca2+ to the binary complexes formed from L-fragment and Ans or Tns caused no additional enhancement of fluorescence in spite of the formation of the ternary complexes. The active site structures are different between PLA2 and L-fragment, and the N-terminal octapeptide moiety of PLA2 possibly plays a role in maintaining the optimally arranged active site structure of the molecule. Comparison of the data suggests that the N-terminal moieties of PLA2S from snakes of an elapid family and from mammalian pancreas are essential for catalysis of a micellar substrate, whereas those of PLA2S from snakes of a viperid family, such as T. flavoviridis, are not. BP-PLA2 bound Ca2+ and was similar to L-fragment in terms of the fluorescence measurements. It appears that the active site of PLA2 has a space large enough to accommodate p-bromophenacyl, Ans or Tns, and Ca2+ together. Comparison of the emission maxima of Ans and Tns complexed with the three proteins indicated that Tns could be a useful fluorescent probe informing us of the state (disorder) of the active site of PLA2.  相似文献   

4.
The properties of the tyrosine and tyrosinate emissions from brain S-100b have been studied by nanosecond time-resolved fluorescence at emission wavelengths in the range 305 to 365 nm. The effect of pH on the fluorescence has been studied at pH 6.5, 7.5, and 8.5 for the Ca(II) apo and holo forms of the protein, and for the apo and holo forms in the presence and absence of Zn(II) at pH 7.5. The fluorescence decay is biexponential at pH 8.5 and triexponential at pH 6.5 and 7.5. The three components of the decay have wavelength and metal ion dependent lifetimes in the ranges 0.06 to 1.05 ns, 0.49 to 3.76 ns, and 3.60 to 14.5 ns. The observation of a long lifetime component at wavelengths characteristic of emission from tyrosinate suggests that in class A proteins this may be a useful diagnostic of the environment of tyrosine in their native structures. The time-resolved emission spectra provide evidence for efficient, subnanosecond protolysis of the excited state of the single tyrosine (Tyr17) under all conditions studied except in 6 M guanidium chloride in which the protein shows only emission from tyrosine (lambda em 305 nm), suggesting that the tyrosinate emission is a property of the tertiary structure of the native protein. The Zn(II)-dependence of the fluorescence is fully consistent with the earlier suggestion that Tyr17 is near the Zn(II) binding site and remote from the high affinity Ca(II) binding site.  相似文献   

5.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

6.
S S York  R C Lawson  D M Worah 《Biochemistry》1978,17(21):4480-4486
8-Anilion-1-naphthalenesulfonate (Ans), recrystallized from water as the magnesium salt, contains a fluorescent impurity representing 0.3% of the absorbance at 351 nm. This impurity can be removed by Sephadex LH-20 chromatography. The chromatographic and spectral properties of this impurity suggest that it is bis(Ans), a dimer of Ans. This bis(Ans) impurity makes a significant contribution to the fluorescence increment observed when lac repressor is added to recrystallized Ans. This occurs because bis(Ans) binds much more tightly to this protein than does Ans. The dissociation constant divided by the number of binding sites per subunit is 3.1 X 10(-6) M for bis(Ans); the corresponding value for Ans is greater than 1 X 10(-4) M. Because of their differing absorption spectra, the impact of this bis(Ans) impurity is especially large with excitation wavelengths above 400 nm. Users of recrystallized Ans should consider the potential consequences of this impurity whenever working with a protein to which Ans binds weakly.  相似文献   

7.
The binding of oligopeptides containing basic and aromatic residues to phospholipid vesicles has been studied by fluorescence spectroscopy. Tryptophan-containing peptide such as Lys-Trp-Lys or Lys-Trp(OMe) exhibit a shift of their fluorescence toward shorter wavelengths and an increased fluorescence quantum yield upon binding to phosphatidylinositol (PI) or phosphatidylserine (PS) vesicles. No binding was detected with phosphatidylcholine vesicles. The binding is strongly dependent on ionic strength and pH. Binding decreases when ionic strength increases indicating an important role of electrostatic interactions. The pH-dependence of binding reveals that the apparent pK of the terminal carboxyl group of Lys-Trp-Lys is raised by ~3 units upon binding to PI and PS vesicles. The binding of tyrosine-containing peptides to PI and PS vesicles is characterized by an increase in the fluorescence quantum yield of the peptide without any shift in fluorescence maximum. A natural nonapeptide from the myelin basic protein which contains one tryptophan residue binds to PI and PS vesicles at low pH when the acidic groups are neutralized. This binding is accompanied by a shift of the tryptophyl fluorescence toward shorter wavelengths together with an enhancement of the fluorescence quantum yield. Dissociation of the complex is achieved at high ionic strength. These results indicate that aromatic residues of oligopeptides bound to the phospholipid polar heads by electrostatic interactions become buried in a more hydrophobic environment in the vicinity of the aliphatic chains of the lipids.  相似文献   

8.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

9.
H C Chiang  A Lukton 《Biopolymers》1975,14(8):1651-1666
Three kinds of fluorescence enhancement result from the interaction of 2-p-toluidinylnaphthalene-6-sulfonate and calf-skin collagen. They are negatively cooperative, independent, and highly cooperative fluorescence enhancement. In the independent region at pH 3.7, the binding number is about 36 moles of 2-p-toluidinylnaphthalene-6-sulfonate per mole of tropocollagen with a binding constant of 2.0 × 104 M?1; with ΔG = ?5.7 kcal/mole, ΔH = ?4.0 kcal/mole, and ΔS = 6 e.u. The pH dependence of fluorescence of native collagen shows that the deprotonated forms of the β and γ carboxyl groups of aspartic and glutamic acid decrease the intensity, possibly by charge repulsion of the negatively charged sulfonate group of 2-p-toluidinylnaphthalene-6-sulfonate. The positive charge of lysine is found to be unimportant in the interaction of 2-p-toluidinylnaphthalene-6-sulfonate with collagen. Fluorescence enhancement is caused mainly by the hydrophobic interactions of 2-p-toluidinylnaphthalene-6-sulfonate and collagen. Salt bridge formation between basic and acidic side chains in very low salt concentration may be detectable by 2-p-toluidinylnaphthalene-6-sulfonate fluorescence.  相似文献   

10.
We have used a fluorescence assay to measure the binding of Acanthamoeba profilin to monomeric Acanthamoeba and rabbit skeletal muscle actin labeled on cysteine-374 with pyrene iodoacetamide. The wavelengths of the pyrene excitation and emission maxima are constant at 346 and 386 nm, but the fluorescence is enhanced up to 50% by profilin. The higher fluorescence is largely due to higher absorbance in the presence of profilin. The fluorescence enhancement has a hyperbolic dependence on the concentration of profilin, suggesting a single class of binding sites. Linear Scatchard plots yield an estimate of the dissociation constant, Kd, of the complex of profilin with pyrenyl-actin. In low-ionic-strength buffers with 2 to 6 mM imidazole (pH 7.0) and 0.1 mM CaCl2 the Kd is 9 microM for both muscle and Acanthamoeba actin. In 50 mM KCl the Kd for the complex with Acanthamoeba actin is 16 microM, while the Kd for the complex with muscle actin is greater than 50 microM.  相似文献   

11.
Small molecules that can specifically bind to a DNA abasic site (AP site) have received much attention due to their importance in DNA lesion identification, drug discovery, and sensor design. Herein, the AP site binding behavior of sanguinarine (SG), a natural alkaloid, was investigated. In aqueous solution, SG has a short-wavelength alkanolamine emission band and a long-wavelength iminium emission band. At pH 8.3, SG experiences a fluorescence quenching for both bands upon binding to fully matched DNAs without the AP site, while the presence of the AP site induces a strong SG binding and the observed fluorescence enhancement for the iminium band are highly dependent on the nucleobases flanking the AP site, while the alkanolamine band is always quenched. The bases opposite the AP site also exert some modifications on the SG''s emission behavior. It was found that the observed quenching for DNAs with Gs and Cs flanking the AP site is most likely caused by electron transfer between the AP site-bound excited-state SG and the nearby Gs. However, the flanking As and Ts that are not easily oxidized favor the enhanced emission. This AP site-selective enhancement of SG fluorescence accompanies a band conversion in the dominate emission from the alkanolamine to iminium band thus with a large emission shift of about 170 nm. Absorption spectra, steady-state and transient-state fluorescence, DNA melting, and electrolyte experiments confirm that the AP site binding of SG occurs and the stacking interaction with the nearby base pairs is likely to prevent the converted SG iminium form from contacting with water that is thus emissive when the AP site neighbors are bases other than guanines. We expect that this fluorophore would be developed as a promising AP site binder having a large emission shift.  相似文献   

12.
The neurotransmitter serotonin plays a modulatory role in the regulation of various cognitive and behavioral functions such as sleep, mood, pain, depression, anxiety, and learning by binding to a number of serotonin receptors present upon the cell surface. The spectroscopic properties of serotonin and their modulation with ionization state have been studied. Results show that serotonin fluorescence, as measured by its intensity, emission maximum, and lifetime, is pH dependent. These results are further supported by absorbance changes that show very similar pH dependence. Changes in fluorescence intensity and absorbance as a function of pH are consistent with a pK(a) of 10.4 +/- 0.2. The ligand-binding site for serotonin receptors is believed to be located in one of the transmembrane domains of the receptors. To develop a basis for monitoring the binding of serotonin to its receptors, its fluorescence in nonpolar media has been studied. No significant binding or partitioning of serotonin to membranes under physiological conditions was observed. Serotonin fluorescence in solvents of lower polarity is characterized by an enhancement in intensity and a blue shift in emission maximum, although the solvatochromism is much less pronounced than in tryptophan. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these results are relevant to future studies of serotonin and its binding to its receptors.  相似文献   

13.
The conformation and saccharide-binding properties of peanut agglutinin (PNA) depend on pH as studied by analytical ultracentrifugation, fluorescence, circular dichroism, equilibrium dialysis, and absorption spectroscopy. PNA is tetrameric in neutral solution and dissociates reversibly into dimers below pH 5.1. Below pH 3.4, the lectin is totally dimeric. Lowering of the pH induces reversible changes in the tertiary and secondary structures of PNA. Binding of saturating amounts of lactose to tetrameric (pH 6.9) or dimeric (pH 3.2) PNA resulted in identical ultraviolet difference spectra. Fluorescence studies of PNA as a function of pH in the presence of lactose indicated that tryptophanyl residues, present at or near the saccharide binding site, are more accessible to the ligand in dimeric than in tetrameric PNA. For solutions of dimeric PNA, containing only minor amounts of tetramers (pH 3.6), equilibrium dialysis with MeUmb-beta Gal beta(1----3)GalNac showed that the binding capacity of PNA was the same as for tetrameric PNA (one binding site per protomer) but the apparent association constant was one order of magnitude lower than for tetrameric PNA. The enhancement of MeUmb-beta Gal beta(1----3)GalNac fluorescence upon binding to PNA was pH dependent: 50% at neutrality, 16% at pH 3.7, and unobservable at pH 3.0, suggesting that the microenvironment of this PNA-bound chromophore changed progressively with pH and was dependent on ionization of an acidic amino acid residue.  相似文献   

14.
K Chiba  T Mohri 《Biochemistry》1987,26(3):711-715
The fluorescence of 1-anilino-8-naphthalenesulfonate (ANS) is progressively enhanced with increasing concentration of it, showing a proportionate blue shift of the emission maximum, by the interaction with the porcine intestinal Ca2+-binding protein (CaBP) in the absence of Ca2+. The apo-CaBP has a single binding site for ANS as determined by the fluorescence change, the apparent dissociation constant (Kd) estimated at 49.1 microM. Addition of Ca2+ or Tb3+ to the ANS-apo-CaBP system is capable of enhancing its fluorescence up to about 2- or 5-fold, respectively, causing further blue shift of the emission maximum. These metal ions do not affect the capacity of ANS binding, but Ca2+ slightly increases the Kd value. Increase of the fluorescence of the ANS-CaBP complex by increasing binding of Ca2+ to it was monophasic, while that with Tb3+ was biphasic, both saturated at the same molar ratio, 2, of added cations to the complex. Biphasic change of response has also been observed in UV absorption of the CaBP with increasing concentration of Tb3+. With a half-saturating concentration of Tb3+, Ca2+ can induce a much higher enhancement of the ANS fluorescence than excess Ca2+ alone. All these results indicate that the CaBP molecule contains a single ANS binding site and the conformation and/or microenvironment surrounding bound ANS of the protein is altered reversibly with binding of Ca2+ or Tb3+ to it and that there are differences between Ca2+- and Tb3+-induced conformation changes around the ANS-binding site and the tyrosine residue of it.  相似文献   

15.
S F Pearce  E Hawrot 《Biochemistry》1990,29(47):10649-10659
Synthetic peptides corresponding to sequences contained within residues 173-204 of the alpha-subunit in the nicotinic acetylcholine receptor (nAChR) of Torpedo californica bind the competitive antagonist alpha-bungarotoxin (BGTX) with relative high affinity. Since the synthetic peptide fragments of the receptor and BGTX each contain a small number of aromatic residues, intrinsic fluorescence studies were used to investigate their interaction. We examined a number of receptor-derived peptide fragments of increasing length (4-32 amino acids). Changes in the lambda max and quantum yield with increasing polypeptide chain length suggest an increase in the hydrophobicity of the tryptophan environment. When selective excitation and subtraction were used to reveal the tyrosine fluorescence of the peptides, a significant red shift in emission was observed and was found to be due to an excited-state tyrosinate. The binding of BGTX to the receptor-derived peptide fragments resulted in a large increase in fluorescence. In addition, at equilibrium, the lambda max of tryptophan fluorescence was shifted to shorter wavelengths. The. fluorescence enhancement, which was saturable with either peptide or BGTX, was used to determine the dissociation constants for the complexes. At pH 7.4, the apparent Kd for a dodecameric peptide (alpha 185-196), consisting of residues 185-196 in the alpha-subunit of the nAChR from Torpedo californica, was 1.4 microM. The Kd for an 18-mer (alpha 181-198), consisting of residues 181-198 of the Torpedo alpha-subunit, was 0.3 microM. No binding or enhanced fluorescence was observed with an irrelevant synthetic peptide of comparable composition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Fluorescence photomicrographs show that the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) binds to hydrophobic components of intact 3T3 cells. Cells exposed to ANS exhibit fluorescence in the cytoplasm, intense nuclear membrane fluorescence, and well-defined fluorescent nucleoli. Fluorescence titrations of 3T3 cells with ANS show a decrease in fluorescence intensity, a blue shift of native cell emission with increasing ANS concentration and the appearance of a new peak due to ANS fluorescence. These fluorescence effects are ascribed to energy transfer processes involving bound ANS and the tryptophan and tyrosine residues of cellular proteins. ANS bound to 3T3 cells appears to quench the long wavelength component of the cellular tryptophan fluorescence, resulting in an unmasking of tryptophan and tyrosine emission at shorter wavelengths.  相似文献   

17.
Steady-state and dynamic fluorescence titrations show that: (a) the complex between beta-lactoglobulin (BLG) and 1-anilinonaphthalene-8-sulfonate (ANS) displays a heterogeneous equilibrium with large changes in the binding strength vs. pH and ion concentration; and (b) the fluorescence response of bound ANS reveals two separate lifetimes that suggest two different sites (or binding modes). While steady-state fluorescence titrations yield effective values of the binding constant and of the bound ANS quantum efficiency, it is shown that, by combining steady-state fluorescence and lifetime decay of ANS, it is possible to give quantitative estimates of the association constants for each site. When heading from the acid (pH approximately 2) to the native state (pH approximately 6) the main result is a very large reduction of the effective binding constant. This and the results of titrations vs. ionic strength suggest that electrostatic interactions are a major contribution to ANS binding to BLG.  相似文献   

18.
The bindings of Mg2+ to the F1 portion of Escherichia coli H+-ATPase and its isolated alpha and beta subunits were studied with 8-anilinonaphthalene-1-sulfonate (ANS). The fluorescence of ANS increased upon addition of F1 or its alpha subunit or beta subunit, as reported previously (M. Hirano, K. Takeda, H. Kanazawa, and M. Futai (1984) Biochemistry 23, 1652-1656). The fluorescence of ANS bound to F1 or its beta subunit increased significantly with further addition of Mg2+, whereas that of the alpha subunit increased only slightly. Ca2+ and Mn2+ had similar effects on the fluorescence of ANS with F1 and its beta subunit. The Mg2+-induced fluorescence enhancement (delta F) was high at an alkaline pH and was lowered by addition of ethylenediaminetetraacetic acid. Dicyclohexylcarbodiimide and azide had no effect on the delta F. Binding analysis showed that the concentration dependence of Mg2+ on the fluorescence enhancement of the beta subunit is similar to that of F1. These results suggest that both the beta subunit and F1 have binding sites for Mg2+ and that the delta F observed with F1 may be due to the binding of Mg2+ to the beta subunit.  相似文献   

19.
Bilirubin–albumin solution gave an emission spectrum in the wavelength range 500–600 nm with emission maxima at 528 nm when excited at 487 nm. The magnitude of fluorescence intensity increased on increasing bilirubin/albumin molar ratio. At three different albumin concentrations, namely, 1.0, 2.5 and 10.0 μM, there was an initial linear increase in fluorescence up to a molar ratio 1.0 in all cases beyond which it sloped off or decreased. This fluorescence enhancement was used to calculate the binding parameters of bilirubin–albumin interaction and the value of binding constant was found to be 1.72×107 l/mol similar to the published values obtained with other methods. Different serum albumins, namely, human (HSA), goat (GSA), pig (PSA) and dog serum albumins (DSA) bound bilirubin with almost the same affinity when studied by the technique of fluorescence enhancement. Bilirubin–albumin interaction was also studied at different pH and ionic strengths. There was a decrease in bilirubin–albumin complex formation on either decreasing the pH from 9.0 to 7.0 or increasing the ionic strength from 0.15 to 1.0. These results suggest that the technique of fluorescence enhancement can be used successfully to study the bilirubin–albumin interaction.  相似文献   

20.
Nanosecond time-resolved emission spectra (TRES) are fluorescence emission spectra obtained at discrete times during the fluorescence decay. The complete data-set obtainable is a surface representing the intensity at all wavelengths and times during the emission decay time. When 2-p-toluidinonaphthalene-6-sulfonate (2,6 p-TNS) is adsorbed to egg lecithin vesicles, an excited-state reaction associated with energetic changes of the emitting species occurs on the nanosecond time scale. Convolution of the fluorescence decay with the excitation response introduces an artifact in the time-dependent spectra. A precedure is described by which this artifact can be eliminated. The data for the generation of time-resolved emission spectra are obtained with a computer-interfaced instrument based on the single-photon counting method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号