首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two phosphate rocks (PR), moderately reactive Hila PR from Colombia and slightly reactive Capinota PR from Bolivia, were compacted with triple superphosphate (TSP) such that 50% of total P in the mixture was in water-soluble form. The effectiveness of these materials as phosphorus sources was compared with that of partially acidulated phosphate rocks (PAPR) at 50% acidulation with sulfuric acid and TSP in Hartsells silt loam (pH 4.5) with maize as the test crop. Huila PAPR and Huila PR compacted with TSP were as effective as TSP as phosphorus sources. Huila PR was only half as effective. The slightly reactive Capinota PR with 8.8% Al2O3 + Fe2O3 content was not suited for direct application, and Capinota PAPR was only half as effective as TSP. Capinota PR compacted with TSP, however, was as effective as TSP. PR compacted with TSP, urea, and KCl was no more effective as phosphorus source than PR compacted with TSP alone.  相似文献   

2.
A greenhouse study compared the effect of soil P-fixing capacity on the relative argonomic effectiveness (RAE) of partially acidulated phosphate rock (PAPR) and water-soluble P. Such information is lacking in the literature. Six soils varying widely in P-fixing capacity (5.6%–56.1%) were used. A phosphate rock (Huila PR) from Colombia was acidulated with H2SO4 at 50% of the level necessary to achieve full conversion to single superphosphate (SSP). Rates of P applied from PAPR or SSP were 0,05, 100, and 300 mg P kg−1. The P fertilizers were mixed with the soils, and maize was grown for 6 weeks before harvest. The results show that the effectiveness of PAPR in increasing dry-matter yield and P uptake over yield and uptake obtained with SSP linearly increased as the soil P-fixing capacity increased. PAPR and SSP were equally effective in increasing dry-matter yield or P uptake at P-fixing capacities of 28% or 36%, respectively. PAPR was found to be more effective than SSP in soils (treated with Fe-gel) with P-fixing capacity higher than these values. The internal efficiency, which is defined as the ratio between dry-matter yield and P uptake, was the same for both PAPR and SSP in all the soils.  相似文献   

3.
Geebelen  W.  Adriano  D.C.  van der Lelie  D.  Mench  M.  Carleer  R.  Clijsters  H.  Vangronsveld  J. 《Plant and Soil》2003,249(1):217-228
Lead immobilization in 10 soils contaminated with Pb from different origin was examined using lime (CaCO3), a mix of cyclonic ash and steelshots (CA+ST), and a North Carolina phosphate rock. The immobilization efficacy of the three amendments was evaluated using single (CaCl2solution) and sequential (BCR method) chemical extractions in tandem with a microbiological Pb biosensor (BIOMET), a Pb phytotoxicity test, Pb plant uptake, and a Physiologically Based Extraction Test (PBET) mimicking Pb bioavailability in the human gastro-intestinal tract. The results demonstrated the necessity of using a diverse suite of bioavailability methodology when in situ metal immobilization is assessed. Sequential (BCR) extractions and PBET analysis indicated that PR was the most effective amendment. PR however, proved ineffective in totally preventing Pb phytotoxicity and Pb uptake on all soils tested. On the contrary, CA+ST and lime decreased BIOMET Pb, Pb phytotoxicity, and Pb uptake to a far greater extent than did PR. BIOMET detectable Pb and Pb uptake, however, were strongly related to Pb in soluble or exchangeable soil fractions (i.e., CaCl2 extractable). By combining these fractions with the acid-extractable Pb, accomplished by using acetic acid extractant, the recently developed BCR sequential extraction scheme appeared to have lost some valuable information on judging Pb bioavailability. The data show that different amendments do not behave consistently across different soils with different sources of contamination. Different indices for measuring Pb bioavailability are also not necessarily consistent within particular soil and amendment combinations.  相似文献   

4.
Decreases in nutrient availability after loss of soil-water saturation are significant constraints to productivity in lowland rainfed rice soils. The effectiveness of soil amendments like lime and straw in ameliorating these constraints are poorly understood. This pot experiment was conducted in Cambodia to investigate changes in soil chemical properties and nutrient uptake by rice after applying lime or straw to continuously flooded or intermittently flooded soil. In continuously flooded soils, exchangeable Al decreased to below 0.2 cmolc/kg. Liming (pH 6.5–6.8) the continuously flooded soil decreased the levels of acetate extractable Fe and P, plant P uptake and shoot dry matter, but had no effect on either Bray-1 or Olsen extractable P values. By contrast, the addition of straw (3.5 g dry straw/kg soil) increased Bray-1, Olsen, and acetate extractable P, plant P uptake, shoot P, and shoot dry matter. The non-amended soils became strongly acidic after loss of soil water saturation: extractable Al increased to 1.0 cmolc/kg, a potentially harmful level for rice. By contrast, extractable P decreased markedly under loss of soil water saturation as did plant P uptake, shoot P, and shoot dry matter. With loss of soil water saturation, liming substantially depressed the levels of Al but it did not increase plant P uptake, shoot P, and shoot dry matter. Straw addition not only decreased extractable Al levels to well below 0.6 cmolc/kg under loss of soil water saturation, but it also increased extractability of soil P, plant P uptake, shoot P, and shoot dry matter. Thus, in rainfed environments, the incorporation of straw may be more effective than liming to pH 6.8 for minimising the negative effects of temporary loss of soil-water saturation on P availability, P uptake, and growth of rice.  相似文献   

5.
在广西典型类型红壤旱地布置玉米磷肥施用量的田间试验,研究不同钙镁磷肥施用量(磷肥Cd含量为0.0651 mg/kg)对玉米产量及地上部Cd累积的影响。结果表明,与不施磷肥处理(CK)相比,施磷肥可分别显著提高春、秋玉米籽粒产量8.2%—13.1%和13.7%—20.0%。高磷(600 kg P2O5/hm2)处理的春玉米秸秆产量比CK显著提高11.4%;施磷处理春、秋玉米秸秆Cd含量分别下降2.7%—45.8%和11.0%—43.6%;而籽粒Cd含量分别下降13.0%—40.6%和9.9%—31.5%,且秸秆和籽粒的Cd含量及累积量均随施磷量的增加而逐渐降低,其中以高磷处理最为显著。玉米秸秆及籽粒Cd累积量在高磷处理下(600 kg P2O5/hm2)分别比低磷处理(75—300 kg P2O5/hm2)降低13.6%—41.5%和8.8%—29.3%。相关分析表明,玉米Cd含量与土壤pH呈显著负相关,与土壤有效Cd含量呈显著正相关。施磷提高土壤pH,而降低土壤有效Cd含量。高量磷肥施用降低土壤Cd的有效性进而降低玉米对Cd的吸收累积。  相似文献   

6.
Summary Rock phosphates from Udaipur (India), North Carolina, Florida, Tennessee and Missouri (USA) were acidulated with HCl or H2SO4, to the extent of 25, 50, 75 or 100 per cent of the requirement for complete conversion into single superphosphate. Partial acidulation resulted in the formation of a mixture of water- and citrate-soluble and -insoluble phosphates, the proportion of the first two increasing with increasing degree of acidulation, at the expense of the insoluble phosphate. For a given degree of acidulation, the P compounds formed with HCl or H2SO4 were of comparable composition, except that the HCl-acidulated products were hygroscopic. Pot experiments with acid P-deficient soils showed that the behaviour of the HCl- or H2SO4- acidulated products in respect of P availability in soil, grain yield response and P uptake by rice was more or less similar. Partially acidulated rock phosphate to the extent of 50 per cent with either of the acids was found to be suitable for growing rice under flooded soil conditions. There is thus scope for the use of HCl- acidulated rock phosphate as a substitute for the H2SO4- acidulated product, for growing rice in acid soils. The scope for use of lower degree HCl-acidulated product in an upland crop — rice rotation in acid soils is also discussed.  相似文献   

7.
Farmers in Niger generally do not plow their fields and are therefore unable to incorporate phosphate. Experiments were conducted in Niger to assess the effect of soil tillage, P source, and fertilizer placement on yields of pearl millet (Pennisetum glaucum [L.] R. Br.). Treatments included single superphosphate (SSP) or ground Tahoua phosphate rock (PRT) incorporated into the soil during tillage or SSP surface applied after tillage. In plots which were not tilled, P sources (SSP, PRT, and PAPR-partially acidulated rock) were broadcast on the soil surface with no incorporation. In order to improve P efficiency under zero tillage, P was point placed in the soil near the plant with either broadcast or point-placed urea. Treatments in which tillage was used showed a slight though nonsignificant yield increase over untilled plots. The yield increase did not appear to be due to phosphate incorporation but rather to direct tillage effects on early plant growth. In a comparison of SSP with PRT or PAPR broadcast on soils not receiving tillage, PRT performed poorly relative to the other P sources. SSP outyielded PAPR and PRT in 1986, but in subsequent years, no significant difference was found between PAPR and SSP. Point placement of P or N near the plant did not significantly increase yields over broadcast treatments even though the millet was planted with wide 1×1 m spacing.  相似文献   

8.
中微量元素和有益元素对水稻生长和吸收镉的影响   总被引:11,自引:0,他引:11  
采用盆栽试验,研究了中微量元素和有益元素对水稻生长和吸收镉的影响。结果表明,在所有测试的元素和施用方法中,硅酸钠叶面喷施显著增加稻谷产量,而碳酸钙、硼酸、硅酸钠土施和亚硒酸钠显著降低了稻谷产量。镁、锌、铁的盐酸盐形态对水稻籽粒的增产效果优于硫酸盐形态,而钙、铜的硫酸盐形态增产效果略高于盐酸盐形态。在钙、镁、硫三种中量元素中,钙增加了水稻籽粒中的Cd浓度和吸收量,而镁和硫则降低了籽粒中的Cd浓度和吸收量,以硫磺粉处理为最低。稻草中的Cd浓度和总量均以氯化镁处理为最高,硫磺粉处理最低。镁能有效抑制Cd从秸秆向籽粒的转移,其盐酸盐优于硫酸盐。在微量元素中,锌对水稻Cd的吸收抑制作用最为显著,其次是铜,而有益元素肥料硅酸钠叶面喷施则显著增加了稻谷中的Cd浓度和吸收量。硫酸亚铁、氯化锰、氯化铜、硼酸和硼砂处理都能有效地抑制Cd从秸秆向籽粒的转移,而硅酸钠叶面喷施和锌处理则促进了Cd的转移,表明硅酸钠抑制水稻吸收Cd的机制很可能发生在土壤中,而非在植株体内或地上部分。在Cd污染土壤上选用适宜的中微量和有益元素肥料及其施用方法,能有效降低水稻对镉的吸收和稻米中的Cd含量。  相似文献   

9.
  • Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses.
  • This study applied Ca in various forms (Ca acetate and CaCl2) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice.
  • The results showed that supplementation of Cd‐contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto‐inhibited Ca2+‐ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up‐regulate the low‐affinity cation transporter (OsLCT1) and down‐regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance‐associated macrophage protein 5 (Nramp5) and Zn/Cd‐transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd‐contaminated soil inhibited Cd uptake of rice.
  • Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
  相似文献   

10.
The search for cheap and environmentally friendly materials is essential for remediation of heavy-metal-contaminated agricultural soils. A pot experiment was undertaken to evaluate the application of rice straw and filamentous fungus Penicillium chrysogenum (P. chrysogenum) on the fractionation of copper (Cu) and cadmium (Cd), soil microbial properties, and Cu and Cd uptake by romaine lettuce (Lactuca sativa) in a contaminated agricultural soil. Rice straw was applied at three rates (0, 7.8, and 11.7 g kg?1 soil), and in combinations with P. chrysogenum (1.0 × 106 spores g?1 soil). It was found that the combined treatment of rice straw and P. chrysogenum significantly decreased the acid-extractable Cu and Cd by 15.4–25.1% and 20.2–27.3%, and increased the oxidizable Cu and Cd by 16.1–18.0% and 72.1–98.4%, respectively. Soil microbial biomass and fresh weight of lettuce were also remarkably enhanced after rice straw plus P. chrysogenum addition. Rice straw combined with P. chrysogenum was more effective in reducing Cu and Cd uptake by lettuce than rice straw alone. The joint application of rice straw and P. chrysogenum remarkably reduced Cu and Cd concentrations in lettuce shoots by 13.6–21.9% and 32.9–41.7%, respectively. These results indicate that the combined application of P. chrysogenum and rice straw is a promising method to alleviate the bioavailability of metals, and to improve soil microbial properties and plant yield in heavy-metal-polluted agricultural soils.  相似文献   

11.
Y Xiang  T W Ridky  N K Krishna    J Leis 《Journal of virology》1997,71(3):2083-2091
Proteolytic processing of the Rous sarcoma virus (RSV) Gag precursor was altered in vivo through the introduction of amino acid substitutions into either the polyprotein cleavage junctions or the PR coding sequence. Single amino acid substitutions (V(P2)S and P(P4)G), which are predicted from in vitro peptide substrate cleavage data to decrease the rate of release of PR from the Gag polyprotein, were placed in the NC portion of the NC-PR junction. These substitutions do not affect the efficiency of release of virus-like particles from COS cells even though recovered particles contain significant amounts of uncleaved Pr76gag in addition to mature viral proteins. Single amino acid substitutions (A(P3)F and S(P1)Y), which increase the rate of PR release from Gag, also do not affect budding of virus-like particles from cells. Substitution of the inefficiently cleaved MA-p2 junction sequence in Gag by eight amino acids from the rapidly cleaved NC-PR sequence resulted in a significant increase in cleavage at the new MA-p2 junction, but again without an effect on budding. However, decreased budding was observed when the A(P3)F or S(P1)Y substitution was included in the NC-PR junction sequence between the MA and p2 proteins. A budding defect was also caused by substitution into Gag of a PR subunit containing three amino acid substitutions (R105P, G106V, and S107N) in the substrate binding pocket that increase the catalytic activity of PR. The defect appears to be the result of premature proteolytic processing that could be rescued by inactivating PR through substitution of a serine for the catalytic aspartic acid residue. This budding defect was also rescued by single amino acid substitutions in the NC-PR cleavage site which decrease the rate of release of PR from Gag. A similar budding defect was caused by replacing the Gag PR with two PR subunits covalently linked by four glycine residues. In contrast to the defect caused by the triply substituted PR, the budding defect observed with the linked PR dimer could not be rescued by NC-PR cleavage site mutations, suggesting that PR dimerization is a limiting step in the maturation process. Overall, these results are consistent with a model in which viral protein maturation occurs after PR subunits are released from the Gag polyprotein.  相似文献   

12.
Two contrasting rice (Oryza sativa L.) cultivars, i.e. Wuyujing 3 (WYJ3, Cd-tolerant) and Shanyou 63 (SY63, Cd-sensitive), were grown on a red soil (Ultisol) to study both individual and combined phytotoxicity of arsenic (As) and cadmium (Cd) in terms of Cd and As availability, their uptake and accumulation, antioxidant defense activity and oxidative damage. The antioxidant defense system examined in this study included enzymatic and non-enzymatic molecular antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH) and ascorbic acid (AsA). Results showed that As or Cd treatment decreased root and shoot biomass in both cultivars compared with their corresponding control (no Cd or As treatment), although less severe inhibition of plant growth was observed in WYJ3 than in SY63. Moreover, rice growth was inhibited more severely by Cd treatment than by As treatment, which could be explained by the higher amount of available Cd (60%) (0.1 M HCl-extractable Cd) compared to the lower amount of available As (15%) (0.5 M NaH2PO4-extractable As) in their postharvest soils. However, shoot biomass in cultivar SY63, and root and shoot biomass in cultivar WYJ3 were significantly higher in the As plus Cd treatment than in the Cd treatment alone, showing that the combined toxicity of these two heavy metals was not additive and on the contrary, As mitigated Cd-induced growth inhibition. The As plus Cd treatment also significantly decreased As or Cd concentrations both in roots and in shoots of the two rice cultivars compared with the As or Cd treatment alone, respectively. On the other hand, treatment with As or Cd alone significantly decreased the SOD and POD activities, and GSH and AsA concentrations, while the activities of these enzymes and the concentrations of GSH and AsA were significantly higher in the As plus Cd treatment than in the Cd treatment alone, resulting in less severe oxidative damage as indicated by the lower concentration of MDA in the As plus Cd treatment (P < 0.05). However, no significant difference was observed in the antioxidant defense activity between the As plus Cd treatment and the As treatment alone. These results suggest that the combined toxicity of As and Cd in rice is lower than that of individual Cd or As, which might be attributed to the decreased uptake and accumulation of Cd and As, and the less oxidative stress caused by the interactive effects of As with Cd both in rhizosphere and in plants.  相似文献   

13.
Pot and field experiments were conducted to investigate the effects of soil amendments (cow manure, rice straw, zeolite, dicalcium phosphate) on the growth and metal uptake (Cd, Zn) of maize (Zea mays) grown in Cd/Zn contaminated soil. The addition of cow manure and rice straw significantly increased the dry biomass, shoot and root length, and grain yield of maize when compared with the control. In pot study, cow manure, rice straw, and dicalcium phosphate all proved effective in reducing Cd and Zn concentrations in shoots and roots. Cd and Zn concentrations in the grains of maize grown in field study plots with cow manure and dicalcium phosphate amendments to highly contaminated soil (Cd 36.5 mg kg?1 and Zn 1520.8 mg kg?1) conformed to acceptable standards for animal feed. Additionally both cow manure and dicalcium phosphate amendments resulted in the significant decrease of Cd and Zn concentrations in shoots of maize.  相似文献   

14.
To understand the physiological mechanism that confers Cd sensitivity, root morphology and Cd uptake kinetics of the Cd-sensitive mutant and wild type rice were investigated. The root length, root surface area, and root number of mutant rice decreased more significantly with increasing Cd concentration in growth media compared with the wild type rice. The uptake kinetics for 109Cd2+ in roots of both the mutant and wild type rice were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period. Concentration-dependent Cd2+ influx in both species could be characterized by the Michaelis-Menten equation, with similar apparent Km values for mutant and wild type rice (2.54 and 2.37 μM, respectively). However, the Vmax for Cd2+ influx in mutant root cells was nearly 2-fold higher than that for wild type rice, indicating that enhanced absorption into the root is one of the mechanisms involved in Cd sensitivity in mutant rice.  相似文献   

15.
OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice   总被引:1,自引:0,他引:1  
Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane-localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant.  相似文献   

16.
The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L?1) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.  相似文献   

17.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

18.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   

19.
To elucidate the contributions of rice root morphology and phosphorus uptake kinetics to P uptake by rice from iron phosphate, a sand culture experiment with either sufficient P supply (control treatment, 10 mg P/l as NaH2PO4) or Fe-P as the only source of P (40 mg P/pot as FePO4 × 4H2O) and a solution culture experiment supplied with either sufficient P (10 mg P/l) or deficient P (0.5 mg P/l) were conducted. Eight rice cultivars, which differed in P uptake from Fe-P, were investigated. Plant P uptake, root morphology, and P uptake kinetics were determined. There were significant (P < 0.05) genotypic variations in both plant dry weight and P uptake per plant among eight rice (Oryza sativa L.) cultivars when supplied with Fe-P as the P source. The Fe-P treatment significantly (P < 0.05) decreased plant dry weight, P uptake per plant, and P concentration in plant dry matter of all cultivars in comparison with the control plants. In Fe-P treated plants, significant (P < 0.05) genotypic variation was shown in root morphology, including root length, surface area, volume, and number of lateral roots. The P uptake per plant from Fe-P by rice was significantly (P < 0.05) correlated with root surface area and root volume as well as with the number of lateral roots, suggesting that the ability of rice to absorb P from Fe-P was closely related to root morphology. Low P supply in solution significantly increased the I max (P < 0.05), but significantly decreased the K M (P < 0.05) for P absorption by all rice cultivars. We supposed that kinetic characteristics of root P uptake could not account for the ability of rice to absorb P from Fe-P. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 2, pp. 260–266. The text was submitted by the authors in English.  相似文献   

20.
镁、锰、活性炭和石灰及其交互作用对小麦镉吸收的影响   总被引:7,自引:0,他引:7  
采用盆栽试验,研究了在镉污染土壤上施用石灰、硫酸镁、硫酸锰和活性炭不同用量以及交互作用对小麦生长和吸收重金属镉的影响.研究结果表明,在试验条件下施用适量的硫酸镁、硫酸锰或与石灰配合能明显提高小麦籽粒产量,单施石灰或与活性炭配合施用降低了小麦籽粒产量;与对照(CK)相比,所有处理秸秆产量均下降.施用硫酸镁能显著降低小麦籽粒和秸秆中Cd浓度,且随用量的增加两增大.低量硫酸锰能有效降低小麦籽粒和秸秆中Cd浓度,高量反而增加小麦对Cd的吸收.石灰、活性炭单独施用或配合施用都能明显减少小麦对Cd的吸收,但籽/杆中Cd比却随石灰用量的增加呈明显的上升趋势.叶面喷施硫酸镁对降低小麦吸收镉的效果与土施相当,但叶面喷施硫酸锰却比土施硫酸锰显著降低了小麦籽粒中的镉浓度与吸收量.硫酸镁与硫酸锰,或石灰、硫酸镁和硫酸锰3种物质配合施用,对小麦籽粒镉浓度和吸收量的降低表现出明显的正交互作用,对抑制小麦体内镉从秸秆向籽粒的转移具有显著效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号