首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of hybrid myosin and subfragment 1 species by incubation of these proteins with free alkali light chains at physiological ionic and temperature conditions is described. Exchange of bound alkali light chain on myosin by free alkali light chains under these conditions is readily demonstrated from the subunit composition of the isolated myosin. Therefore, the light chain exchange previously described for the one-headed subfragment 1 [Sivaramakrishnan, M., & Burke, M (1981) J. Biol. Chem. 256, 2607--2610] also occurs in the two-headed myosin molecule. It is found than the isozyme to hybrid transformation is dependent on both the temperature and the ionic strength of the incubation mixture but is relatively independent of pH in the range 6.5--8.0. A comparison of the SF1(A1) leads to SF1(A2)h system with the SF1(A2) leads to SF1(A1)h system indicates that more hybrid is formed in the latter case. With the assumption that hybrid formation reflects the degree of reversible dissociation exhibited by the isozyme, under the particular experimental condition employed, the data signify that the subunit interactions in the two isozymes are not identical and that the heavy chain--A1 interactions are significantly more stable that the heavy chain--A2 ones. An examination of the ATPase properties of the thermal hybrids in the presence and absence of actin indicates close similarities to their corresponding "native" isozymic counterparts.  相似文献   

2.
Conformational stability of the myosin rod   总被引:1,自引:0,他引:1  
Chymotryptic cleavage patterns of myosin rods from pig stomach, chicken gizzard, and rabbit skeletal muscle indicate that short (approximately 45 nm) heavy meromyosin subfragment 2 (SF2) is a consistent product of all three rods, whereas long (approximately 60 nm) SF2 is derived only from skeletal muscle myosin. Differential scanning calorimetry was used to follow the thermally induced melting transition of the rods and certain of their subfragments. In 0.12 M KCl, sodium phosphate buffer, pH 6.2-7.6, the light meromyosin (LMM) and SF2 domains of each rod had essentially identical conformational stabilities. Temperature midpoints for the melting transitions were 54-56 degrees C for the two smooth muscle myosin rods and 50-53 degrees C for the skeletal muscle myosin rod. In 0.6 M K Cl buffer, melting transitions for the smooth muscle myosin rods were essentially unchanged, but skeletal muscle myosin rods showed multiphase melting, with major transitions at 43 degrees C and 52 degrees C. The first of these was tentatively attributed to LMM, and the second to SF2. In 0.12 M K Cl buffer, the LMM transition was stabilised so that it superimposed on that of SF2. No melting was observed in any of the rods at physiological temperature. These results indicate that, excluding a possible but only narrow hinge region, the entire myosin rod has essentially uniform conformational stability at physiological pH and ionic strength, and thus that the contractile and elastic properties of the cross-bridge exist in the heavy meromyosin subfragment 1 (SF1) domains of the molecule.  相似文献   

3.
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain.  相似文献   

4.
The procedure of high performance ion-exchange chromatography has been used to fractionate subfragment 1 of myosin (SF1) into its isoenzymic forms. In contrast to conventional ion-exchange procedures which yield two fractions corresponding to SF1(A1) and SF1(A2), the high performance liquid chromatography (HPLC) procedure resolves SF1 into four discrete fractions. The first pair that is eluted appears to be A1-containing isoenzymes while the latter pair corresponds to the A2 forms based on their polypeptide compositions by gel electrophoresis in the presence of sodium dodecyl sulfate. By gel electrophoresis under nondenaturing conditions it is not possible to differentiate between the two fractions corresponding to each isoenzyme. Although very minor differences between the fractions can be seen by the presence of extraneous peptides, these are present in far below stoichiometric amounts and, therefore, make it very unlikely that the superior fractionation by the HPLC procedure is based on their presence. An examination of the heavy chain heterogeneity in each of these fractions by peptide mapping revealed that the extra separation was based on this factor. Thus the HPLC procedure is capable of providing separation of SF1 into heavy chain-based isozymes as well as the light chain forms. ATPase measurements of these fractions reveal only minor differences in the Ca2+- and EDTA-activated ATPase.  相似文献   

5.
The procedure of thermal ion-exchange chromatography has been used to examine the effect of prior tryptic cleavage on the stability of myosin subfragment 1 (SF1). Although it is found that digestion does destabilize the subunit interactions at physiological temperatures, the heavy-chain subunit can be isolated either as an equimolar complex comprised of 50K, 27K, and 21K fragments or as one comprised of 50K, 27K, and 18K peptides. Thus, the interactions within the heavy chain are considerably more stable than those between the two subunits. Both forms of the free severed heavy chain exhibit ATPase properties similar to those of the parent tryptic SF1. The Vmax for the actin-activated MgATPase of the free severed heavy chain is the same as that for both undigested and tryptic SF1 (A2). Since its Km for actin is similar to that of tryptic SF1(A2), it may be concluded that changes in the affinity of SF1 for actin induced by trypsin [Botts, J., Muhlrad, A., Takashi, R., & Morales, M. F. (1982) Biochemistry 21, 6903-6905] are not dependent on the presence of the associated alkali light chain. Furthermore, the communication between the SH1 site and the ATPase site is also shown to be independent of the associated alkali light chain, and it persists despite the cleavages present in the free heavy chain. Studies on the ability of these severed heavy chains to reassociate with free A1 and A2 chains indicate that the binding site is retained in the 21K-severed heavy chain but is lost in the 18K form.  相似文献   

6.
1. o-Iodosobenzoic acid (IOB) caused the formation of a disulfide bridge between SH1 and SH2 groups of myosin SF1 rendering inactive its ATPase activity. 2. IOB at high concentrations provoked fragmentation of SF1 at its tryptophan residues. 3. The main fragmentation point was located at 15 K from the amino terminus of the myosin heavy chain. 4. Actin was not fragmented by IOB. It protected SF1 tryptophans from IOB attack. 5. These results suggest a possible use of IOB as a reagent to study protein tryptophan under nondenaturing conditions.  相似文献   

7.
The preparation of highly purified myosin from surgical specimen of human uterine muscle is described. Antibodies were raised in rabbits against this immunogen. In immunodiffusion, they react with uterine and chicken gizzard muscle myosin, no reaction is observed between uterine myosin and the anti-chicken-gizzard- myosin. In immunofluorescence, anti-uterine-myosin stains smooth muscle in the contractile and "modulated" state and non-muscle cells such as fibroblasts, platelets and endothelium of various species. Thus, these antibodies contrast anti-gizzard-myosin, which has previously been shown to be specific for contractile state muscle cells. We therefore conclude that the uterine myosin preparation consists of two immunogens, the one being associated with cell contractility and the other, termed cytoplasmic myosin, with motility and mitosis. The latter is indistinguishable from the myosin present in non-muscle cells and can be absorbed specifically with actomyosin from blood platelets.  相似文献   

8.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

9.
Evidence is presented that under physiological conditions of ionic strength and temperature, where myosin Subfragment 1 is hydrolyzing MgATP, the interaction between its subunits is extremely labile. Incubation of [3H]N-ethylmaleimide-SF1(A1) with N-ethylmaleimide-SF1(A2) in the presence of 10 mM MgATP at 37 degrees C resulted in the exchange of subunits between these isozymes. This is readily discernible from the subunit composition and distribution of the 3H label after separation of the isozymes by ion exchange chromatography. Moreover, incubation of unmodified SF1(A1) or SF1(A2) with the free Alkali light chains A2 and A1, respectively, under the same conditions led to the formation of significant amounts of the hybrid species. These findings suggest that in vivo the Alkali light chain-heavy chain interaction of Subfragment 1 is in a state of dynamic equilibrium between associated and dissociated states.  相似文献   

10.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

11.
K B Munson  M J Smerdon  R G Yount 《Biochemistry》1986,25(23):7640-7650
The synthesis of a divalent ATP analogue [3,3'-dithiobis[3'(2')-O-[6-(propionylamino)hexanoyl]adenosine 5'-triphosphate] (bis22ATP)] is described in which two molecules of ATP are linked via esterification of their 3'(2')-hydroxyls to the linear dicarboxylic acid 3,3'-dithiobis[N-(5-carboxypentyl)-propionamide] [[HO2C(CH2)5NHC(O)(CH2)2S-]2]. This linkage introduces 22 atoms (a maximum of approximately 2.8 nm) between the ribose oxygens of two ATP molecules. Myosin subfragment 1 (SF1) or heavy meromyosin (HMM) readily cleave bis22ATP to bis22ADP. Upon subsequent addition of excess vanadate ion, both enzymes are rapidly inactivated by formation of a stable vanadate-bis22ADP complex at the active site. By adjustment of the reaction conditions, dimers of SF1 or HMM, both cross-linked with bis22ADP-vanadate, could be prepared. Dimers of SF1 could be separated from monomers by sucrose gradient centrifugation but not by gel filtration. These observations imply that the average Stokes radius of the dimer approximates that of the monomer, a result predicted only for monomers linked approximately side by side. Conversely, dimers of HMM were separated from HMM monomers by gel filtration, reflecting an increase in their Stokes radii. This increase, however, prevented resolution of HMM dimers from monomers by sucrose gradient centrifugation. These results and the molecular dimensions of bis22ATP suggest that the 3'-(2')-hydroxyl of ATP is no more than 1.3 nm from the surface of myosin and suggest further in the simplest interpretation that the active site is most likely located near the middle of the heads of myosin. Analytical sedimentation velocity experiments were performed in order to compare the sedimentation coefficient (s0(20),w) of the SF1 dimer formed by cross-linking to values predicted from ellipsoidal models of the dimer. The observed s0(20),w of the dimer was much closer to the range predicted for a side-to-side arrangement of SF1 monomers than the range predicted for two monomers linked end to end, a result consistent with the active site location suggested above. During the course of these experiments, unmodified SF1 was used as a control, and its sedimentation behavior was reexamined. We have corroborated the finding that the s0(20),w displayed by SF1 can be affected to a limited extent by the particular experimental parameters employed during centrifugation [Morel, J. E., & Garrigos, M. (1982) Biochemistry 21, 2679-2686].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

13.
A facile and high-yield synthesis of a new ATP analogue, 2-[(4-azido-2-nitrophenyl)amino]ethyl triphosphate (NANTP), is described. NANTP and ATP are hydrolyzed by skeletal myosin subfragment 1 (SF1) at comparable rates in the presence of Ca2+, Mg2+, or NH4+-EDTA. NANTP is also cleaved but less readily by mitochondrial F1-ATPase and by (Na+ + K+)-ATPase from dog brain and hog kidney. F-Actin markedly activates NANTP cleavage by SF1 in the presence of Mg2+, suggesting that the diphosphate product NANDP is slow to be released from the enzyme. [alpha-32P]NANDP binds to a single site on SF1 (KA = 1 X 10(6) M-1) with an affinity identical with that of ADP. The absorption maximum of NANDP was shifted from 474 to 467 nm upon binding to SF1, suggesting that the purine binding site has a dielectric constant of about 45. NANDP was trapped in nearly stoichiometric amounts at the active site by cross-linking SH1 and SH2 with N,N'-p-phenylenedimaleimide (pPDM) or by chelation with cobalt (III) phenanthroline [Wells, J., & Yount, R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966]. The trapped [beta-32P]NANDP X SF1 complex, like the comparable ADP X SF1 complex, was stable for days at 0 degree C and could be purified free of extraneous analogue by ammonium sulfate precipitation and gel filtration. Photolysis of the purified complex gave greater than 50% covalent incorporation of the trapped NANDP into the 95-kilodalton (kDa) heavy chain of SF1. Limited trypsinization and analysis by gel electrophoresis showed that greater than 95% of the bound label was associated with the 25-kDa NH2-terminal peptide. Without trapping, NANDP labeling of SF1 was nonspecific and was not prevented by addition of a large excess of ATP. This new approach of trapping photoaffinity analogues by cross-linking agents before photolysis may prove to be of general usefulness in increasing the specificity and extent of labeling of enzymes that undergo substrate-induced conformation changes.  相似文献   

14.
Phosphorylation-dependent regulation of Limulus myosin   总被引:12,自引:0,他引:12  
Myosin from Limulus, the horseshoe crab, is shown to be regulated by a calcium-calmodulin-dependent phosphorylation of its regulatory light chains. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of a Limulus myosin preparation reveals three light chain bands. Two of these light chains have been termed regulatory light chains based on their ability to bind to light chain-denuded scallop myofibrils (Sellers, J. R., Chantler, P. D., and Szent-Gy?rgyi, A. G. (1980) J. Mol. Biol. 144, 223-245). Ths other light chain does not bind to these myofibrils and is thus termed the essential light chain. Both Limulus regulatory light chains can be phosphorylated with a highly purified turkey gizzard myosin light chain kinase or with a partially purified myosin light chain kinase which can be isolated from Limulus muscle by affinity chromatography on a calmodulin-Sepharose column. Phosphorylation with both of these enzymes requires calcium and calmodulin. Limulus myosin is isolated in an unphosphorylated form. The MgATPase of this unphosphorylated myosin is only slightly activated by rabbit skeletal muscle actin plus tropomyosin. The calcium-dependent phosphorylation of the myosin results in an increase in the actin-activated MgATPase rate. Once phosphorylated, the actin-activated MgATPase rate is only slightly modified by calcium. This suggests that calcium operates mainly at the level of the myosin kinase-calmodulin system.  相似文献   

15.
1. It is confirmed that myosin light-chain kinase is a protein of mol.wt. about 80,000 that is inactive in the absence of calmodulin. 2. In the presence of 1 mol of calmodulin/mol of kinase 80-90% of the maximal activity is obtained. 3. Crude preparations of the whole light-chain fraction of rabbit fast-skeletal-muscle myosin contain enough calmodulin to activate the enzyme. A method for the preparation of calmodulin-free P light chain is described. 4. A procedure is described for the isolation of calmodulin from rabbit fast skeletal muscle. 5. Rabbit fast-skeletal-muscle calmodulin is indistinguishable from bovine brain calmodulin in its ability to activate myosin light-chain kinase. The other properties of these two proteins are also very similar. 6. Rabbit fast-skeletal-muscle troponin C was about 10% as effective as calmodulin as activator for myosin light-chain kinase. 7. By chromatography on a Sepharose-calmodulin affinity column evidence was obtained for the formation of a Ca2+-dependent complex between calmodulin and myosin light-chain kinase. 8. Troponin I from rabbit fast skeletal muscle and histone IIAS were phosphorylated by fully activated myosin light-chain kinase at about 1% of the rate of the P light chain.  相似文献   

16.
The myosin isozymes present in the developing rat soleus muscle from 1 week to 6 weeks after birth were investigated using biochemical and immunological methods. Electrophoresis of native myosin reveals that adult slow myosin is present in the soleus as early as 1 week after birth. At this time, embryonic and neonatal myosin can also be demonstrated. Using an immunotransfer technique, the presence of slow myosin heavy chain can be demonstrated at all time points examined whereas neonatal myosin heavy chain diminishes in quantity between 2 and 3 weeks, and is undetectable in the adult soleus. Specific polyclonal antibodies were prepared to embryonic, neonatal, and adult fast and slow myosins. Immunocytochemistry reveals a cellular heterogeneity at all stages examined. Different combinations of myosin isozymes can be found in the soleus fibers depending on the stage of development; these results suggest therefore that myosin isozyme transitions are occurring. Approximately half the fibers contain embryonic and slow myosin at 1 week after birth; these fibers subsequently contain only slow myosin. A second group of fibers contains embryonic and neonatal myosin at 1 week and most of them subsequently accumulate adult fast myosin. A portion of this latter group begins to acquire slow myosin from 4 weeks of age. These data are interpreted to suggest that a preprogrammed sequence of myosin isozymes is embryonic----neonatal----adult fast. At any time during development of an individual fiber, induction of slow myosin accumulation and repression of other types can occur.  相似文献   

17.
A R Krainer  T Maniatis 《Cell》1985,42(3):725-736
We have identified six distinct factors necessary for pre-mRNA splicing in vitro by selective inactivation and complementation studies, and by fractionation procedures. Splicing factor 1 (SF1) is sensitive to micrococcal nuclease, and appears to consist of at least U1 and U2 snRNPs, since splicing is inhibited when the 5' termini of U1 and U2 snRNAs are removed by site-directed cleavage with RNAase H. SF2 is a micrococcal nuclease-resistant factor present in the nuclear extract but absent from an S100 extract. SF3 is a factor that can be preferentially inactivated by moderate heat treatment. Two additional factors (SF4A and SF4B) were identified by fractionation of the nuclear extract using spermine-agarose and CM-sepharose chromatography. SF1, SF2, and SF4B appear to be required for cleavage of the pre-mRNA at the 5' splice site and lariat formation, whereas SF3 and SF4A are only required for cleavage at the 3' splice site and exon ligation.  相似文献   

18.
Membrane-cytoskeleton interaction regulates transmembrane currents through stretch-activated channels (SACs); however, the mechanisms involved have not been tested in living cells. We combined atomic force microscopy, confocal immunofluorescence, and patch-clamp analysis to show that stress fibers (SFs) in C2C12 myoblasts behave as cables that, tensed by myosin II motor, activate SACs by modifying the topography and the viscoelastic (Young's modulus and hysteresis) and electrical passive (membrane capacitance, C(m)) properties of the cell surface. Stimulation with sphingosine 1-phosphate to elicit SF formation, the inhibition of Rho-dependent SF formation by Y-27632 and of myosin II-driven SF contraction by blebbistatin, showed that not SF polymerization alone but the generation of tensional forces by SF contraction were involved in the stiffness response of the cell surface. Notably, this event was associated with a significant reduction in the amplitude of the cytoskeleton-mediated corrugations in the cell surface topography, suggesting a contribution of SF contraction to plasma membrane stretching. Moreover, C(m), used as an index of cell surface area, showed a linear inverse relationship with cell stiffness, indicating participation of the actin cytoskeleton in plasma membrane remodeling and the ability of SF formation to cause internalization of plasma membrane patches to reduce C(m) and increase membrane tension. SF contraction also increased hysteresis. Together, these data provide the first experimental evidence for a crucial role of SF contraction in SAC activation. The related changes in cell viscosity may prevent SAC from abnormal activation.  相似文献   

19.
Summary The preparation of highly purified myosin from surgical specimen of human uterine muscle is described. Antibodies were raised in rabbits against this immunogen. In immunodiffusion, they react with uterine and chicken gizzard muscle myosin, no reaction is observed between uterine myosin and the anti-chicken-gizzard- myosin. In immunofluorescence, antiuterine-myosin stains smooth muscle in the contractile and modulated state and non-muscle cells such as fibroblasts, platelets and endothelium of various species. Thus, these antibodies contrast anti-gizzard-myosin, which has previously been shown to be specific for contractile state muscle cells. We therefore conclude that the uterine myosin preparation consists of two immunogens, the one being associated with cell contractility and the other, termed cytoplasmic myosin, with motility and mitosis. The latter is indistinguishable from the myosin present in non-muscle cells and can be absorbed specifically with actomyosin from blood platelets.Abbreviations ATP Adenosine triphosphate - DNAse I Deoxyribonuclease I - DTE Dithioerythritol - SDS Sodiumdodecylsulfate - PAGE Polyacrylamide electrophoresis  相似文献   

20.
A rapid procedure for the purification of myosin light chain kinase present in chicken gizzard smooth muscle using anion exchange high-performance liquid chromatography is described. The procedure allows preparation of microgram amounts of the protein directly from the extract of gizzard myofibrils and then is suitable for the study of myosin light chain kinase in small muscles. The protein was judged to be greater than 95% pure by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme retains its activity since it catalyzes the calcium-calmodulin-dependent phosphorylation of the 20,000-Da myosin light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号