首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of neck flexion on contingent negative variation (CNV) and anticipatory postural control using an arm flexion task in standing. CNV was adopted to evaluate the state of activation of brain areas related to anticipatory postural control. Subjects were required to flex the arms in response to a sound stimulus preceded by a warning sound stimulus. Two different intervals (2.0 and 3.5 s) between these two stimuli were used in neck position in quiet standing (neck resting) and neck position at 80% angle of maximal neck flexion. The mean amplitude of CNV 100-ms before the response stimulus, recorded from a Cz electrode, was calculated. Onset timing of activation of the postural muscles (lumbar paraspinal, biceps femoris and gastrocnemius) with respect to the anterior deltoid was analyzed. Reaction time at the anterior deltoid was significantly shorter in the 2.0 s period than in the 3.5 s period, and in the neck flexion than in the neck resting in both periods. In the 2.0 s, but not in the 3.5 s period, neck flexion resulted in an increased CNV amplitude and an increased duration of preceding activation of the postural muscles, and the correlation between these increases was significant.  相似文献   

2.
We tested magnetic resonance imaging (MRI) as a means to collect geometric data for moment arm estimation. A knee specimen in five successive flexion postures was scanned by MRI, while simultaneously tendon positions of loaded muscles were measured (long head of biceps femoris, lateral and medial gastrocnemius, gracilis, rectus femoris, sartorius, semimembranosus, semitendinosus, and tensor fasciae latae). Discrete rotation centres were derived from MRI pictures. Moment arms were estimated as the distances from these centres to the tendons. The ratio of tendon travel over the increment of joint angulation was the alternative, more reliable estimate of the moment arm. An important principal shortcoming of MRI is the impossibility of accounting for force distribution in taut tissue. As a consequence, for some muscles, considerable inaccuracies in moment arm estimation are found in a relatively small range of joint angulation (up to about 30% for the rectus femoris and semimembranosus). For the tensor fasciae latae, the moment arm cannot be estimated by MRI, while the estimate by tendon travel is unreliable owing to the deformability and attachments of the fascia lata.  相似文献   

3.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

4.
Tendon orientations in knee models are often taken from cadaver studies. The aim of this study was to investigate the effect of muscle activation on tendon orientation in vivo. Magnetic resonance imaging (MRI) images of the knee were made during relaxation and isometric knee extensions and flexions with 0 degrees , 15 degrees and 30 degrees of knee joint flexion. For six tendons, the orientation angles in sagittal and frontal plane were calculated. In the sagittal plane, muscle activation pulled the patellar tendon to a more vertical orientation and the semitendinosus and sartorius tendons to a more posterior orientation. In the frontal plane, the semitendinosus had a less lateral orientation, the biceps femoris a more medial orientation and the patellar tendon less medial orientation in loaded compared to unloaded conditions. The knee joint angle also influenced the tendon orientations. In the sagittal plane, the patellar tendon had a more anterior orientation near full extension and the biceps femoris had an anterior orientation with 0 degrees and 15 degrees flexions and neutral with 30 degrees flexions. Within 0 degrees to 30 degrees of flexion, the biceps femoris cannot produce a posterior shear force and the anterior angle of the patellar tendon is always larger than the hamstring tendons. Therefore, co-contraction of the hamstring and quadriceps is unlikely to reduce anterior shear forces in knee angles up to 30 degrees . Finally, inter-individual variation in tendon angles was large. This suggests that the amount of shear force produced and the potential to counteract shear forces by co-contraction is subject-specific.  相似文献   

5.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

6.
Knee flexion is a movement that initiates rising from a sitting position, which is a common therapeutic exercise for patients unable to ambulate. We investigated how voluntary isometric biceps femoris contraction affects motor evoked potential (MEP) amplitude following transcranial magnetic stimulation, background electromyographic (EMG) amplitude, and H-reflex amplitude in ipsilateral leg muscles. Subjects were seated on the edge of a bed with their hips and knees flexed at 90°, and the soles of their feet on the floor. MEP and background EMG were recorded from the tibialis anterior (TA) and soleus (SOL), and H reflexes from SOL of 30 volunteers. Background EMG and MEP also were recorded while voluntarily contracting tested muscles. Biceps femoris contraction increased MEP and background EMG for TA and SOL ( p < 0.01). Maximal background EMG and MEP increased with increasing voluntary contraction of tested muscles ( p < 0.005). Regression slope differed little between TA and SOL. Biceps femoris contraction facilitated MEP comparably for TA and SOL, while SOL background EMG exceeded that of TA ( p < 0.02). The relationship between MEP facilitation and background EMG changed to favor more efficient facilitation in TA ( p < 0.05), but not SOL ( p > 0.1). MEP recorded from TA and SOL with subthreshold stimuli using needle electrodes were more frequent with biceps femoris contraction ( p < 0.04). H-reflex amplitude of SOL decreased during biceps femoris contraction ( p < 0.001). We concluded that biceps femoris contraction affects leg muscle MEP, background EMG, and H reflexes differently.  相似文献   

7.
Based on the current literature, it remains unclear whether electromyographic onset of the deep fibers of the multifidus (DM) is dependent on the direction of shoulder movement and the position of the center of foot pressure (CFP). In the present study, we re-examined the electromyographic onset of the DM during shoulder flexion and extension and investigated the influence of the CFP position before arm movement. Intramuscular and surface electrodes recorded the electromyographic onset of the DM, superficial fibers of the multifidus (SM), rectus abdominis, and anterior and posterior deltoid. Eleven healthy participants performed rapid, unilateral shoulder flexion and extension in response to audio stimuli at three CFP positions: quiet standing, extreme forward leaning, and extreme backward leaning. It was found that the electromyographic onset of the DM and SM relative to the deltoid was dependent on the direction of arm movement. Additionally, of all electromyographic onsets recorded, only that of the DM occurred earlier in the extreme forward leaning position than in the extreme backward leaning position during shoulder flexion. These results suggest that the electromyographic onset of DM was influenced by the biomechanical disturbance such as shoulder movement and CFP position.  相似文献   

8.
The objective of this report was to study the influence of the orientation of gravitational loading on the behavior of anterior and posterior trunk muscles during anterior trunk flexion-extension. Participants (N=13) performed five (5) cycles of trunk flexion-extension while standing with gravity parallel to the body axis and five (5) cycles while in the supine condition (e.g. sit-ups) with gravity perpendicular to the body axis. Surface electromyographic (EMG) patterns from lumbar paraspinal, rectus abdominis, external oblique, rectus femoris, semimembranosis, and biceps femoris muscles were analyzed during each condition. EMG signals were synchronized with lumbar flexion and trunk inclination angles. Flexion-extension from the standing position resulted in a myoelectric silent period of the lumbar posterior muscles (e.g. flexion-relaxation phenomena (FRP)) as well as the hamstring muscles through deep angles during which activity was observed in abdominal muscles. Flexion-extension during sit-ups, however, resulted in a myoelectric silent period of the abdominal muscles and the quadriceps through deep angles during which the lumbar posterior muscles were active. In this condition, the FRP was not observed in posterior muscles. The new findings demonstrate the profound impact of the orientation of the gravity vector on the FRP, the abdominal muscles reaction to gravitational loads during sit-ups and its relationships with lumbar antagonists and thigh musculature. The new findings suggest that gravitational moments requirements dominate the FRP through the prevailing kinematics, load sharing and reflex activation-inhibition of muscles in various conditions. Lumbar kinematics or fixed sensory motor programs by themselves, however, are not the major contributor to the FRP. The new findings improve our insights into spinal biomechanics as well as understanding and evaluating low back disorders.  相似文献   

9.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

10.
A pelvic position has been sought that optimizes abdominal muscle activation while diminishing hip flexor activation. Thus, the objective of the study was to investigate the effect of pelvic position and the Janda sit-up on trunk muscle activation. Sixteen male volunteers underwent electromyographic (EMG) testing of their abdominal and hip flexor muscles during a supine isometric double straight leg lift (DSLL) with the feet held approximately 5 cm above a board. The second exercise (Janda sit-up) was a sit-up action where participants simultaneously contracted the hamstrings and the abdominal musculature while holding an approximately 45 degrees angle at the knee. Root mean square surface electromyography was calculated for the Janda sit-up and DSLL under 3 pelvic positions: anterior, neutral, and posterior pelvic tilt. The selected muscles were the upper and lower rectus abdominis (URA, LRA), external obliques, lower abdominal stabilizers (LAS), rectus femoris, and biceps femoris. The Janda sit-up position demonstrated the highest URA and LRA activation and the lowest rectus femoris activation. The Janda sit-up and the posterior tilt were significantly greater (p < 0.01 and p < 0.05, respectively) than the anterior tilt for the URA and LRA muscles. Activation levels of the URA and LRA in neutral pelvis were significantly (p < 0.01 and p < 0.05, respectively) less than the Janda sit-up position, but not significantly different from the posterior tilt. No significant differences in EMG activity were found for the external obliques or LAS. No rectus femoris differences were found in the 3 pelvis positions. The results of this study indicate that pelvic position had a significant effect on the activation of selected trunk and hip muscles during isometric exercise, and the activation of the biceps femoris during the Janda sit-up reduced the activation of the rectus femoris while producing high levels of activation of the URA and LRA.  相似文献   

11.
In bilateral shoulder flexion with the arms moving from the sides of the body to the horizontal level while standing, no preceding activation of the triceps surae (TS) with respect to focal muscles has been found. Considering that preceding activation would offer a useful indicator of anticipatory postural control, it was attempted to induce preceding activation by limiting the anterior displacement range of the center of foot pressure in the anteroposterior direction (CoPap). Subjects were 13 healthy young adults. The 50% anterior range of CoPap displacement caused by shoulder flexion was calculated, and the floor inclined by the subject’s weight when CoPap extended beyond that range. Subjects were instructed not to incline the floor during shoulder flexion. Under the limitation condition, the ankle and knee joints plantarflexed and extended at 1.1°, respectively, with no hip movement; that is, the whole body inclined backward by pivoting at the ankle. This limitation resulted in preceding muscle activation of TS as well as erector spinae and biceps femoris, and no significant differences in onset time were seen between these muscles. These results demonstrated that by limiting CoPap anterior displacement, preceding activation of TS could be induced with backward inclination of the whole body.  相似文献   

12.
The purpose of this study was to determine if handgrip position during arm cranking exercise influences the neuromuscular activity of muscles biceps brachii (BB), lateral head of triceps brachii (TB), middle deltoid (DT), infraspinatus (IS) and brachioradialis (BR). Fifteen participants cranked an arm ergometer using three different handgrip positions (supinated, pronated, and neutral). Electromyographic (EMG) data were recorded from the aforementioned muscles, and relative duration of EMG activation and amplitude were quantified for the first and second 180 degrees of crank angle. EMG measures were analyzed with MANOVA and follow-up univariate procedures; alpha was set at 0.01. The relative durations of EMG activation did not differ between handgrip positions. Muscle IS exhibited 36% less amplitude in the supinated versus neutral handgrip position (second half-cycle), and muscle BR displayed 63% greater amplitude across cycles in the neutral versus supinated and pronated handgrip positions. The greater BR activity displayed in the neutral handgrip position may reflect its anatomical advantage as an elbow flexor when the forearm is in neutral position. Muscle IS exhibited less activity in the supinated position and may be clinically relevant if it allows arm cranking to occur without subsequent shoulder pain, which is often the aim of shoulder rehabilitation.  相似文献   

13.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

14.
The purpose of this study was to investigate the effects of a single bout of whole-body vibration on isometric squat (IS) and countermovement jump (CMJ) performance. Nine moderately resistance-trained men were tested for peak force (PF) during the IS and jump height (JH) and peak power (PP) during the CMJ. Average integrated electromyography (IEMG) was measured from the vastus medialis, vastus lateralis, and biceps femoris muscles. Subjects performed the 2 treatment conditions, vibration or sham, in a randomized order. Subjects were tested for baseline performance variables in both the IS and CMJ, and were exposed to either a 30-second bout of whole-body vibration or sham intervention. Subjects were tested immediately following the vibration or sham treatment, as well as 5, 15, and 30 minutes posttreatment. Whole-body vibration resulted in a significantly higher (p < or = 0.05) JH during the CMJ immediately following vibration, as compared with the sham condition. No significant differences were observed in CMJ PP; PF during IS or IEMG of the vastus medialis, vastus lateralis, or biceps femoris during the CMJ; or IS between vibration and sham treatments. Whole-body vibration may be a potential warm-up procedure for increasing vertical JH. Future research is warranted addressing the influence of various protocols of whole-body vibration (i.e., duration, amplitude, frequency) on athletic performance.  相似文献   

15.
The knee jerk was elicited during regular firing of relatively low-threshold motor units of the biceps femoris muscle (during weak voluntary contraction). Besides the reflex response of the rectus femoris muscle, synchronous discharges of motor units of the biceps femoris muscle and activation of new motor units also were observed. Poststimulus histograms and statistical analysis of interspike intervals of motor units of the biceps femoris muscle revealed well-marked excitatory influences synchronous with the reflex response of the rectus femoris. This result can be explained by the presence of excitatory inputs of Ia afferents on motoneurons of the antagonist muscle. In the knee jerk, excitation of motoneurons of the antagonist was followed by later inhibitory influences which evidently correspond to the "silent period" of motoneurons of the agonist muscle during the elicitation of its tendon reflex.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 624–632, November–December, 1976.  相似文献   

16.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

17.
Moment arm of the patellar tendon in the human knee   总被引:5,自引:0,他引:5  
The moment arm of the knee-extensor mechanism is described by the moment arm of the patellar tendon calculated with respect to the screw axis of the tibia relative to the femur. The moment arm may be found once the line of action of the patellar tendon and the position and orientation of the screw axis are known. In this study, the orientation of the patellar tendon and the position and orientation of the finite screw axis of the tibia relative to the femur were calculated from measurements of the three-dimensional positions of the bones obtained from fresh cadaver specimens. Peak values of the patellar tendon moment arm ranged from 4-6 cm for the six knees tested; the moment arm was maximum near 45 degrees of knee flexion. The moment arm of the patellar tendon was nearly equal to the shortest (perpendicular) distance between the line of action of the patellar tendon and the axis of rotation of the knee at all flexion angles, except near full extension. Near full extension, the angle between the patellar tendon and the screw axis was significantly less than 90 degrees, and the magnitude of the moment arm was then less than the perpendicular distance between these two lines. The patellar tendon moment arm remained roughly constant across individuals when normalized by femoral condyle width, suggesting that anatomical differences play a large role in determining the moment arm of the extensor mechanism.  相似文献   

18.
This study investigated how position in the range of motion influences the power spectral density function during static shoulder forward flexion. 23 healthy females (20-30 years) volunteered as subjects. They performed maximum static shoulder forward flexions in three positions: 45, 65 and 90 degrees of shoulder flexion. An isokinetic dynamometer was used and the subjects were seated in a specially constructed chair to enable adequate fixation. The elbow was extended and the hand pronated. Electromyographic (EMG) signals (using surface electrodes) were obtained from the descending part of the right trapezius, the anterior portion of the right deltoid, the right infraspinatus and the common belly of the right biceps brachii. The four EMG-signals and the torque and shoulder angle were analyzed by computer. For each 256 ms, mean power frequency, root mean square value and mean torque were calculated. At each of the three positions four 256 ms periods were analyzed and the data are presented as their means. In the trapezius and the biceps brachii the mean power frequency did not change between the three positions. Deltoid and infraspinatus had significantly higher mean power frequencies at 90 degrees than at 45 degrees of flexion. Different factors behind the change in mean power frequency are discussed. The need to standardize the range of motion when studying dynamic fatiguing contractions is emphasised.  相似文献   

19.
Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.  相似文献   

20.
Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号