首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

2.
A journey to the world of glycobiology   总被引:7,自引:0,他引:7  
Finding of the deletion phenomenon of certain oligosaccharides in human milk and its correlation to the blood types of the donors opened a way to elucidate the biochemical basis of blood types in man. This success led to the idea of establishing reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins. N-Linked sugar chains were first released quantitatively as oligosaccharides by enzymatic and chemical means, and labelled by reduction with NaB3H4. After fractionation, structures of the radioactive oligosaccharides were determined by a series of methods developed for the studies of milk oligosaccharides. By using such techniques, structural rules hidden in the N-linked sugar chains, and organ- and species-specific N-glycosylation of glycoproteins, which afforded a firm basis to the development of glycobiology, were elucidated. Finding of galactose deficiency in the N-linked sugar chains of serum lgG from patients with rheumatoid arthritis, and malignant alteration of N-glycosylation in various tumors opened a new research world called glycopathology.However, recent studies revealed that several structural exceptions occur in the sugar chains of particular glycoproteins. Finding of the occurrence of the Gal1-4Fuc1- group linked at the C-6 position of the proximal N-acetylglucosamine residue of the hybrid type sugar chains of octopus rhodopsin is one of such examples. This finding indicated that the fucosyl residue of the fucosylated trimannosyl core should no more be considered as a stop signal as has long been believed. Furthermore, recent studies on dystroglycan revealed that the sugar chains, which do not fall into the current classification of N- and O-linked sugar chains, are essential for the expression of the functional role of this glycoprotein.It was found that expression of many glycoproteins is altered by aging. Among the alterations of the glycoprotein patterns found in the brain nervous system, the most prominent evidence was found in P0. This protein is produced in non-glycosylated form in the spinal cord of young mammals. However, it starts to be N-glycosylated in the spinal cord of aged animals.These evidences indicate that various unusual sugar chains occur as minor components in mammals, and play important roles in particular tissues.  相似文献   

3.
Sjögren's syndrome (SS) is an autoimmune disease, and some patients have been found to have SS complicated with rheumatoid arthritis (RA), in which IgG is known to carry abnormal N-linked oligosaccharides. In order to investigate the relationship between SS and RA, the structures of N-linked oligosaccharides of IgG from 12 primary SS patients without RA, 9 RA patients, and 8 healthy individuals were analyzed using reversed-phase high-performance liquid chromatography, in combination with sequential exoglycosidase treatment and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. All of the IgG samples obtained from primary SS patients, RA patients, and healthy individuals contained the same series of biantennary complex-type oligosaccharides, but the ratio of each oligosaccharide differed among these 3 groups. The incidence of galactose-lacking N-linked oligosaccharides obtained from the IgG of RA patients was significantly higher than that from healthy individuals, but that from the serum IgG of primary SS patients varied among individuals. The patients with primary SS were classified into two groups based on the galactosylation levels of IgG oligosaccharides; one group exhibits galactosylation levels as low as those of RA patients and another exhibits levels similar to those of healthy individuals. Measurement of levels of rheumatoid factor (RF) revealed that primary SS patients with a high incidence of RF belonged to the low galactosylation group, as did RA patients. These results suggest that appearance of IgG carrying abnormal N-linked oligosaccharides in primary SS may be related to future complication with RA.  相似文献   

4.
Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M) was proved to act on complex type biantennary oligosaccharides of glycoproteins by using dansylated asparagine-linked and pyridylaminated oligosaccharides, as the substrate. The enzyme could act on both asialo- and sialo-biantennary oligosaccharides. This is the only endo-β-N-acetylglucosaminidase known to act on sialo glycans, though their activity for them was weak. The enzyme could liberate complex type biantennary oligosaccharides from native human asialotransferrin, which was ascertained by a combination of the pyridylaminated method and HPLC. The enzyme had substrate specificity for high-mannose type oligosaccharides different from those of the endo-β-N-acetylglucosaminidases of other microorganisms: ovalbumin glycopeptide-IV was a better substrate for Endo-M than glycopeptide-V. The enzyme could act on complex type triantennary oligosaccharides of dansylated glycopeptide prepared from calf fetuin. The enzyme had various novel specificities in regard to activities on complex type and high-mannose type oligosaccharides in glycoproteins.  相似文献   

5.
The glycosylation pattern of a humanized anti-EGFR×anti-CD3 bispecific single-chain diabody with an Fc portion (hEx3-scDb-Fc) produced by recombinant Chinese hamster ovary cells was evaluated and compared with those of a recombinant humanized anti-IL-8 antibody (IgG1) and human serum IgG. N-Linked oligosaccharide structures were estimated by two-dimensional high-performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. No sialylation was observed with purified hEx3-scDb-Fc and the anti-IL-8 antibody. From the analysis of neutral oligosaccharides, approximately more than 90% of the N-linked oligosaccharides of hEx3-scDb-Fc and the anti-IL-8 antibody were alpha-1,6-fucosylated. The galactosylated biantennary oligosaccharides comprise over 40% of the total N-linked oligosaccharides in both hEx3-scDb-Fc and the anti-IL-8 antibody. The fully galactosylated biantennary oligosaccharides from hEx3-scDb-Fc and the anti-IL-8 antibody accounted for only 10% of the N-linked; however, more than 20% of the N-linked oligosaccharides were fully galactosylated biantennary oligosaccharides in human serum IgG. The glycosylation pattern of hEx3-scDb-Fc was quite similar to that of the anti-IL-8 antibody.  相似文献   

6.
Sixteen asparagine-linked oligosaccharides ranging in size from (Man)2(GlcNAc)2 (Fuc)1 to (GlcNAc)6(Man)3(GlcNAc)2 were obtained from human 1-acid glycoprotein and fibrinogen, hen ovomucoid and ovalbumin, and bovine fetuin, fibrin and thyroglobulin by hydrazinolysis, mild acid hydrolysis and glycosidase treatment. The oligosaccharides hadN-acetylglucosamine at the reducing termini and mannose andN-acetylglucosamine residues at the non-reducing termini and were prepared for use asN-acetylglucosaminyltransferase substrates. Purification of the oligosaccharides involved gel filtration and high performance liquid chromatography on reverse phase and amine-bonded silica columns. Structures were determined by 360 MHz and 500 MHz proton nuclear magnetic resonance spectroscopy, fast atom bombardment-mass spectrometry and methylation analysis. Several of these oligosaccharides have not previously been well characterized.Abbreviations bis bisecting GlcNAc - DMSO dimethylsulfoxide - FAB fast atom bombardment - Fuc l-fucose - Gal d-galactose - GLC gas-liquid chromatography - GlcNAc or Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man or M d-mannose - MES 2-(N-morpholino)ethanesulfonate - MS mass spectrometry - NMR nuclear magnetic resonance - PIPES piperazine-N,N-bis(2-ethane sulfonic acid) the nomenclature of the oligosaccharides is shown in Table 1.  相似文献   

7.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

8.
The oligosaccharide structures ofCry j I, a major allergenic glycoprotein ofCryptomeria japonica (Japanese cedar, sugi), were analysed by 400 MHz1H-NMR and two-dimensional sugar mapping analyses. The four major fractions comprised a series of biantennary complex type N-linked oligosaccharides that share a fucose/xylose-containing core and glucosamine branches including a novel structure with a nongalactosylated fucosylglucosamine branch.Rabbit polyclonal anti-Cry j I IgG antibodies cross-reacted with three different plant glycoproteins having the same or shorter N-linked oligosaccharides asCry j I. ELISA and ELISA inhibition studies with intact glycoproteins, glycopeptides and peptides indicated that both anti-Cry j I IgGs and anti-Sophora japonica bark lectin II (B-SJA-II) IgGs included oligosaccharide-specific antibodies with different specificities, and that the epitopic structures against anti-Cry j I IgGs include a branch containing 1–6 linked fucose and a core containing fucose/xylose, while those against anti-B-SJA-II IgGs include nonreducing terminal mannose residues. The cross-reactivities of human allergic sera to miraculin andClerodendron Trichotomum lectin (CTA) were low, and inhibition studies suggested that the oligosaccharides onCry j I contribute little or only conformationally to the reactivity of specific IgE antibodies.Abbreviations Cry j I a major allergenic glycoprotein ofCryptomeria japonica - B-SJA-II Sophora japonica bark lectin II - CTA Clerodendron trichotomum lectin - TFMS trifluoromethanesulfonic acid - HRP horseradish peroxidase  相似文献   

9.
A sensitive and quantitative method for the structural analysis of oligosaccharide was established for the glycoform analysis of glycoproteins. In this study,N-linked oligosaccharides of human IgG and bovine transferrin were analyzed for the evaluation of the method. Carbohydrate moiety of glycoprotein was released by hydrazinolysis and purified by paper chromatography. The oligosaccharides were labeled with a fluorescent dye, 2-aminobenzamide, for the enhancement of detection sensitivity. Sialylated (acidic) oligosaccharides were separated from neutral oligosaccharide by employing a strong anion-exchange column (MonoO) followed by the treatment with sialidase. Enzymatically desialyated fractions and neutral fractions of oligosaccharides were applied to normal-phase HPLC to resolve the peaks according to glucose unit (GU). The structure of separated molecules was further determined by sequential digestion with exoglycosidases. As a result, disialylated biantennary complextype oligo saccharide was found to be a major sugar chain in bovine transferrin (63%). In human IgG, core fucosylated asialobiantennary complex oligosaccharides were dominant. These results coincided well with reported results.  相似文献   

10.
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.  相似文献   

11.
Human blood coagulation factor X has two N-linked oligosaccharides at Asn39 and Asn49 residues and two O-linked oligosaccharides at Thr17 and Thr29 residues in the region of the factorX activationpeptide (XAP) which is cleaved off during its activation by factor IXa. We determined the structure of oligosaccharides in the XAP region of human factor X. Four glycopeptides each containing a glycosylation site were isolated by digestion of XAP with endoproteinase Asp-N followed by reversed-phase HPLC. N-linked oligosaccharides released from the glycopeptides by glycoamidase A digestion were derivatized with 2-aminopyridine. Pyridylamino(PA)-oligosaccharides were separated by HPLC into neutral and sialyl oligosaccharides using an anion-exchange column. Structures of oligosaccharides and their contents at each glycosylation site were determined by a two-dimensional sugar mapping method. The contents of the neutral oligosaccharides at Asn39 and Asn49 residues were 32.5% and 30.0%, respectively. Six neutral and twelve monosialyl oligosaccharides isolated from both N-linked glycosylation sites showed similar elution profiles composed of bi-, tri-and tetra-antennary complex type oligosaccharides. The predominant component in neutral oligosaccharides was biantennary without a fucose residue. Two major monosialyl oligosaccharides were also biantennary without fucose and with a Neu5Ac-26 residue. In addition, the structures of O-linked oligosaccharides at Thr17 and Thr29 residues were suggested to be disialylated Gal/3GalNAc sequences by their component analyses.Abbreviations Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Man d-mannose - HPLC high-performance liquid chromatography - NDV Newcastle disease virus - Neu5Ac 5-N-acetylneuraminic acid - ODS octadecylsilyl - PA pyridylamino - RVV-X Russell's viper venom factor X activator - TBS Tris-buffered saline - XAP factor X activation peptide.  相似文献   

12.
Unlike their counterparts in budding yeast Saccharomyces cerevisiae, the glycoproteins of Schizosaccharomyces pombe contain, in addition to α-d-mannose (Man), a large number of α-d-galactose (Gal) residues. In both yeasts, large outer chains are attached to the oligosaccharide cores of glycoproteins during export via Golgi. Formation of the yeast-specific large outer chain is initiated by α-1,6-mannosylatransferase encoded by the och1 + gene, the disruption of which blocked outer chain elongation. We previously reported that N-linked oligosaccharide structures of S. pombe och1Δ mutant consisted of Gal2–6Man9GlcNAc2 with α-linked Gal residues attached to the core oligosaccharide moiety. The disruption of gms1 +, a gene encoding the UDP-galactose transporter required for the synthesis of galactomannan, abolished cell surface galactosylation in S. pombe. In this study, we constructed a gms1Δoch1Δ double mutant and determined the N- and O-linked oligosaccharide structures present on the cell surface. Oligosaccharides were liberated from glycoproteins by hydrazinolysis and labeled with the fluorophore, 2-aminopyridine. The pyridylaminated N-linked oligosaccharides were analyzed by high-performance liquid chromatography in combination with α1,2-mannosidase digestion and partial acetolysis. These analyses revealed that the N-linked oligosaccharides of gms1Δoch1Δ cells consisted of α1,2-linked Man-extended core oligosaccharides (Man8–12GlcNAc2) from which the fission yeast-specific α-linked Gal residues were completely absent.  相似文献   

13.
TheN-linked carbohydrate chains of the-subunit of highly purified urinary human chorionic gonadotropin have been re-investigated. The oligosaccharides were released enzymatically by peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F, and fractionated by a combination of FPLC and HPLC. As a result of the application of improved fractionation methods, apart from the earlier reported carbohydrate chains, also small amounts of trisialo tri- and tri-antennary oligosaccharides were found. The primary structures of the latter carbohydrate chains have been determined by 500-MHz1H-NMR spectroscopy to beAbbreviations hCG human chorionic gonadotropin - hCG- -subunit - hCG- -subunit - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (E.C. 3.5.1.52) - endo-F endo--N-acetylglucosaminidase-F (E.C. 3.2.1.96) - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - CBB coomassie brilliant blue R 250 - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

14.
Relative affinities of several fucosylated and nonfucosylated oligo-N-acetyllactosaminoglycans for immobilized wheat germ agglutinin (WGA) were studied using a chromatographic technique. (1-3) Fucosylation of theN-acetylglucosamine unit(s) in mono- and biantennary saccharides of the Gal1-4GlcNAc-R type strongly reduced the WGA-affinity. In contrast, (1-2) fucosylation of the nonreducing galactose unit(s) of the saccharides did not reduce the affinity.  相似文献   

15.
The progeny of Herpes simplex virus type 1 (HSV-1) grown in ricin-resistant 14 cells (RicR14) lackingN-acetylglucosaminyltransferase I was released in the extracellular medium at a very low rate. By using a monoclonal antibody immobilized on Sepharose we purified from HSV-1-infected RicR14 cells a viral glycoprotein (gC), which carries bothN-andO-linked oligosaccharides. Glycopeptides obtained from [3H]mannoselabeled gC by Pronase digestion were entirely susceptible to endo--N-acetylglucosaminidase H, and the major oligosaccharide released was Man4GlcNAc. The accumulation of this high-mannose species was related to the enzymic defect of the host cells and to the long retention of the viral glycoprotein within the cells. The extent ofO-glycosylation evaluated in [14C]glucosamine-labeled gC from RicR14 cells as compared to that of gC from wild type cells did not appear to be significantly modified.Abbreviations Con A concanavalin A - BHK cells baby hamster kidney cells - HSV Herpes simplex virus  相似文献   

16.
Glycosylation, the most extensive co- and post-translational modification of eukaryotic cells, can significantly affect biological activity and is particularly important for recombinant glycoproteins in human therapeutic applications. The baculovirus-insect cell expression system is a popular tool for the expression of heterologous proteins and has an excellent record of producing high levels of biologically active eukaryotic proteins. Insect cells are capable of glycosylation, but their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. A previous study demonstrated that an immediate early recombinant baculovirus could be used to extend the insect cell N-glycosylation pathway by contributing bovine -1,4 galactosyltransferase (GalT) immediately after infection. Lectin blotting assays indicated that this ectopically expressed enzyme could transfer galactose to an N-linked glycan on a foreign glycoprotein expressed later in infection. In the current study, glycans were isolated from total Sf-9 cell glycoproteins after infection with the immediate early recombinant baculovirus encoding GalT, fluorescently conjugated and analyzed by electrophoresis in combination with exoglycosidase digestion. These direct analyses clearly demonstrated that Sf-9 cells infected with this recombinant baculovirus can synthesize galactosylated N-linked glycans.  相似文献   

17.
α-(2,3)-Sialylated biantennary and triantennary oligosaccharides were enzymatically prepared from pyridyl-2-amino-oligosaccharides with terminal Gal residues, using an α-(2,3)-specific trans-sialidase from Trypanosoma cruzi (Lee, K. B., and Lee, Y. C. (1994) Anal. Biochem. 216, 358-364). From the pyridyl-2-amino-derivatives of neutral and α-(2,6)-monosialylated biantennary oligosaccharides from human fibrinogen, 5 different sialyl biantennary oligosaccharides were obtained. From two different asialo-triantennary oligosaccharides from fetuin, 35 sialyl oligosaccharides were obtained. The trans-sialidase transferred sialic acids effectively and indiscriminately to different galactosyl residues in the different positions on the substrates. Since the starting materials are neutral oligosaccharide of established structure, and the only α-(2,3)-sialyl residues are added to the nonreducing Gal terminal residues, the structures of these oligosaccharides could be identified unambiguously by using the three-dimensional mapping technique (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146.) in combinations with strategic digestion with β-galactosidase, β-N-hexosaminidase, and sialidase L.  相似文献   

18.
The 500-MHz1H-NMR characteristics of theN-linked carbohydrate chain Man1-6[Xyl1-2]Man1-4GlcNAc1-4[Fuc1-3]GlcNAc1-NAsn of the proteolytic enzyme bromelain (EC 3.4.22.4) from pineapple stem were determined for the oligosaccharide-alditol and the glycopeptide, obtained by hydrazinolysis and Pronase digestion, respectively. The1H-NMR structural-reporter-groups of the (1–3)-linked fucose residue form unique sets of data for the alditol as well as for the glycopeptide.  相似文献   

19.
Ascorbic acid oxidase (E.C.1.10.3.3) from the green zucchini squash (Cucurbita pepo medullosa) is a copper-containing glycoprotein which catalyzes the reaction:l-ascorbic acid +1/2 O2l-dehydroascorbic acid + H2O. The carbohydrate content of the purified plant glycoprotein amounted to 3% (w/w), and monosaccharide analysis revealed the carbohydrate moiety to be of theN-glycosidic type. The carbohydrate chains were released from the apoenzyme by digestion with PNGase-F immobilized on Sepharose 4B. After fractionation on Bio-Gel P-2 and purification on Mono-Q, the neutral oligosaccharide was investigated by 500-MHz1H-NMR spectroscopy. The primary structure of theN-linked carbohydrate chain was established to be: Abbreviations AAO ascorbic acid oxidase - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - Man mannose - Xyl xylose - GLC gas-liquid chromatography - FPLC fast protein liquid chromatography - NMR nuclear magnetic resonance - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

20.
The structural requirements for the interaction of asparagine-linked oligosaccharide moieties of glycoproteins withErythrina variegata agglutinin (EVA) were investigated by means of affinity chromatography on an EVA-Sepharose column. Some of the branched poly-N-acetyllactosamine-type oligosaccharides obtained from human erythrocyte band 3 glycoprotein were found to show high affinity to EVA-Sepharose, whereas complex-type oligosaccharides were shown to have low affinity. Hybrid type, oligomannose-type and unbranched poly-N-acetyllactosamine-type oligosaccharides bound very little or not at all to EVA-Sepharose. To further study the carbohydrate-binding specificity of this lectin, we investigated the interaction of immobilized EVA and oligosaccharide fragments obtained through partial hydrolysis from branched poly-N-acetyllactosamine-type oligosaccharides. Branched poly-N-acetyllactosamine-type oligosaccharides were subjected to limited hydrolysis with 0.1% trifluoroacetic acid at 100°C for 40 min and then separated on an amino-bonded silica column. One of pentasaccharides thus prepared strongly bound to the EVA-Sepharose column. Structural analysis of this pentasaccharide showed that the Gal1-4GlcNAc1-3(Gal1-4GlcNAc1-6)Gal sugar sequence, which is an l-antigen determinant, was essential for the high affinity binding of the oligosaccharides to the EVA-Sepharose column.Abbreviations EVA Erythrina variegata agglutinin - WGA wheat germ agglutinin - STA potato lectin - LEA tomato lectin - DSA Datura stramonium agglutinin - PBS 0.01 M sodium phosphate buffer, pH 7.3, containing 0.15 M NaCl - Galol galactitol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号