首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages express a number of proteins involved in sterol efflux pathways, including apolipoprotein E (apoE) and scavenger receptor class B type I (SR-BI). We have investigated a potential interaction between these two sterol efflux pathways in modulating overall macrophage sterol flux. We utilized an experimental system in which we increased expression of each of these proteins to a high physiologic range in order to perform our evaluation. We show that in apoE-expressing cells, a 4-fold increase in SR-BI expression leads to reduction of sterol and phospholipid efflux. SR-BI-mediated reduction in sterol efflux was only observed in cells that expressed endogenous apoE. In J774 cells that did not express apoE, a similar increase in SR-BI level led to increased sterol efflux. The divergent response of sterol efflux after increased SR-BI was maintained in the presence of a number of structurally diverse extracellular sterol acceptors. Increased SR-BI expression also enhanced sterol efflux to exogenously added apoE. Investigation of a potential mechanism for reduced efflux in apoE-expressing cells indicated that SR-BI expression reduced macrophage apoE by accelerating the degradation of newly synthesized apoE. This led to decreased secretion of apoE and reduced the fraction of apoE sequestered on the cell surface. Thus, enhanced SR-BI expression in macrophages can reduce the cellular level and secretion of apoE by accelerating degradation of the newly synthesized protein. This reduction of endogenous apoE is accompanied by reduced sterol efflux from macrophages.  相似文献   

2.
3.
We have previously established the presence of a pool of apoE sequestered on the macrophage cell surface by demonstrating its displacement from a cell monolayer at 4 degrees C. In this series of experiments, we use a cell surface biotinylation protocol to directly quantitate apoE on the macrophage cell surface and evaluate its transport to and from this cell surface pool. In human monocyte-derived macrophages labeled to equilibrium and in a mouse macrophage cell line transfected to constitutively express human apoE3, approximately 8% of total cellular apoE was present on the surface, but only a portion of this surface pool served as a direct precursor to secreted apoE. The half-life of apoE on the macrophage cell surface was calculated to be approximately 12 min. On SDS-polyacrylamide gel electrophoresis, the apoE isolated from the surface fraction of cells labeled to equilibrium migrated in an isoform pattern distinct from that observed from the intracellular fraction, with the surface fraction migrating predominantly in a higher molecular weight isoform. Pulse labeling experiments demonstrated that newly synthesized apoE reached the cell surface by 10 min but was predominantly in a low molecular weight isoform. There was also a lag between appearance of apoE on the cell surface and its appearance in the medium. Biotinylated apoE, which accumulated in the medium, even from pulse labeled cells, was predominantly in the high molecular weight isoform. Additional experiments demonstrated that low molecular weight apoE present on the cell surface was modified to higher molecular weight apoE by the addition of sialic acid residues prior to secretion and that this conversion was inhibited by brefeldin A. These results demonstrate an unexpected complexity in the transport and cellular processing of macrophage cell surface apoE. Factors that modulate the size and turnover of the cell surface pool of apoE in the macrophage remain to be identified and investigated.  相似文献   

4.
5.
Factors that regulate apolipoprotein E (apoE) secretion by macrophages will have important effects on vessel wall lipid flux and atherosclerosis. Macrophages express the LDL receptor, which binds apoE with high affinity and could thereby affect the net secretion of apoE from macrophages. In these studies, we demonstrate that treatment of J774 macrophages transfected to constitutively express a human apoE3 cDNA with simvastatin, to increase LDL receptor activity, reduces the secretion of apoE. To further examine the relationship between LDL receptor expression and apoE secretion from macrophages, mouse peritoneal macrophages (MPMs) were isolated from mice with constitutively high expression of human LDL receptor to increase overall LDL receptor expression by 2- to 3-fold. Cells with increased LDL receptor expression also showed reduced apoE secretion compared with MPMs with basal LDL receptor expression. The effect of changes in LDL receptor expression on apoE secretion was isoform-specific, with greater reduction of apoE4 compared with apoE3 secretion and no reduction of apoE2 secretion, paralleling the known affinity of each isoform for LDL receptor binding. The effect of the LDL receptor on apoE secretion for each isoform was further reflected in LDL receptor-dependent changes in apoE-mediated cholesterol efflux. These results establish a regulatory interaction between two branches of macrophage sterol homeostatic pathways that could facilitate a rapid response to changes in macrophage sterol content relative to need.  相似文献   

6.
The control of apoE gene expression by sterols and the relationship between regulation of the apoE and low density lipoprotein (LDL) receptor genes were investigated in a human macrophage line. Incubation of THP1 cells in either LDL or acetylated LDL increased apoE mRNA levels 4- to 15-fold. In addition, the cellular abundance of these two mRNA species (apoE and LDL receptor) was inversely regulated by cellular cholesterol content over an identical dose-response relationship. Regulation of the LDL receptor and apoE genes could, however, be temporally dissociated in response to the accumulation or removal of lipoprotein-derived (exogenous) cholesterol and in response to perturbation of endogenous cellular cholesterol biosynthesis. In addition, we observed that the apoE gene responded more promptly to 25-hydroxycholesterol than to exogenous cholesterol. These data support the concept that the apoE gene be considered among the family of genes sensitively regulated by cellular sterol balance but suggest that the molecular mechanism accounting for the modulation of the LDL receptor and apoE genes are distinct, with the relationship between cell sterol balance and apoE gene regulation being more complex.  相似文献   

7.
8.
The glycosylation of human apolipoprotein (apo) E was examined with purified plasma apoE and apoE produced by transfected cell lines. The carbohydrate attachment site of plasma apoE was localized to a single tryptic peptide (residues 192-206). Sequence analysis and amino sugar analysis of this peptide derived from asialo-, monosialo-, or disialo-apoE indicated that the carbohydrate moiety is attached only to Thr194 in monosialo- and disialo-apoE and that asialo-apoE is not glycosylated. Mammalian cells that normally do not express apoE were transfected with human apoE plasmid expression vectors to test the utilization of potential carbohydrate attachment sites and the role of apoE glycosylation in secretion. Site-specific mutants of apoE, designed to eliminate or alter glycosylation sites, were expressed in HeLa cells by acute transfection. Apolipoprotein E(Thr194----Ala) was secreted exclusively as the asialo isoform, confirming that Thr194 is the site of carbohydrate attachment in these cells and indicating that glycosylation of apoE is not essential for secretion. Apolipoprotein E(Thr194----Asn,Gly196----Ser), which introduces a potential site for N-glycosylation at position 194, was secreted with a higher apparent molecular weight than native, O-glycosylated apoE. Studies with tunicamycin indicated that this apoE was N-glycosylated at Asn194. Stably transfected cell lines expressing human apoE were prepared from wild-type Chinese hamster ovary (CHO) cells and from CHO ldlD cells, which are defective in glycosylation. The transfected wild-type cells secreted multiply sialylated apoE. The transfected ldlD cells also secreted high levels of apoE even in the absence of glycosylation, which confirms that glycosylation is not essential for secretion of apoE.  相似文献   

9.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   

10.
There has been increasing interest in a potential role for fatty acids in adversely affecting organismal substrate utilization and contributing to the cardiovascular complications in insulin resistance. Fatty acids have already been implicated in regulating the expression of a number of genes in resident cells of the vessel wall. In the current studies, we evaluated a potential role for fatty acids in the regulation of macrophage apoE expression. Incubation in oleic acid increased the synthesis and secretion of apoE by human monocyte-derived macrophages. Part of this stimulation was mediated at a post-translational locus. Oleic acid increased the secretion of apoE from macrophages that constitutively expressed a human apoE3 cDNA. Incubation in palmitic acid decreased apoE secretion from these cells. The effect of oleic acid on apoE secretion could not be accounted for by the known effect of fatty acid on cellular sterol, because incubation in oleic acid did not suppress the degradation of nascent apoE. Incubation in oleic acid for at least 6 h was required to observe an effect on apoE secretion. Oleic acid altered the glycosylation pattern of cellular and secreted apoE, with a loss of the most heavily sialylated isoform. Oleic acid had no effect on the glycosylation of interleukin 6 secreted from macrophages. Elimination of apoE glycosylation, by substitution of threonine 194 with alanine, eliminated oleic acid-mediated stimulation of apoE secretion. These results indicate that oleic acid increases apoE secretion from macrophages at a locus involving post-translational glycosylation.  相似文献   

11.
In fission yeast, orthologs of mammalian SREBP and Scap, called Sre1 and Scp1, monitor oxygen-dependent sterol synthesis as a measure of cellular oxygen supply. Under low oxygen conditions, sterol synthesis is inhibited, and Sre1 cleavage is activated. However, the sterol signal for Sre1 activation is unknown. In this study, we characterized the sterol signal for Sre1 activation using a combination of Sre1 cleavage assays and gas chromatography sterol analysis. We find that Sre1 activation is regulated by levels of the 4-methyl sterols 24-methylene lanosterol and 4,4-dimethylfecosterol under conditions of low oxygen and cell stress. Both increases and decreases in the level of these ergosterol pathway intermediates induce Sre1 proteolysis in a Scp1-dependent manner. The SREBP ortholog in the pathogenic fungus Cryptococcus neoformans is also activated by high levels of 4-methyl sterols, suggesting that this signal for SREBP activation is conserved among unicellular eukaryotes. Finally, we provide evidence that the sterol-sensing domain of Scp1 is important for regulating Sre1 proteolysis. The conserved mutations Y247C, L264F, and D392N in Scp1 that render Scap insensitive to sterols cause constitutive Sre1 activation. These findings indicate that unlike Scap, fission yeast Scp1 responds to 4-methyl sterols and thus shares properties with mammalian HMG-CoA reductase, a sterol-sensing domain protein whose degradation is regulated by the 4-methyl sterol lanosterol.  相似文献   

12.
甾醇是一类广泛存在于生物体内的环戊烷骈多氢菲衍生物,其不仅是细胞膜的重要组成成分,还具有重要的生理和药理活性。随着合成生物学和代谢工程技术的发展,近些年来应用酵母细胞异源合成甾醇的研究不断深入。但由于甾醇是疏水性大分子,倾向于积累在酵母的膜结构中而引发细胞毒性,一定程度上限制了甾醇产量的进一步提升。因此,揭示酵母中甾醇转运机制,特别是与甾醇转运相关的转运蛋白的工作原理,有助于设计新的策略,解除酵母细胞工厂中的甾醇积累毒性、实现甾醇增产。酵母中甾醇转运主要通过蛋白质介导的非囊泡运输机制来完成,本文归纳了酵母中已报道的5类甾醇转运相关蛋白,即OSBP/ORPs家族蛋白、LAM家族蛋白、NPC样甾醇转运蛋白、ABC转运家族蛋白和CAP超家族蛋白,汇总了这些蛋白对细胞内甾醇梯度分布和稳态维持所起的重要作用。此外,本文还综述了甾醇转运蛋白在酵母细胞工厂中的应用现状。  相似文献   

13.
Recent reports from this laboratory indicate that exposure of cholesterol-loaded macrophages to high density lipoprotein 3 (HDL3) stimulates not only cholesterol efflux, but also results in a two- to threefold increase in apoE accumulation in the media (Dory, L., 1989. J. Lipid Res. 30: 809-816). The present experiments demonstrate that the effect of HDL3, and to a lesser extent HDL2, on apoE secretion is specific, concentration-dependent, and may require interaction with the HDL receptor. Very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) fail to specifically stimulate apoE secretion by cholesterol-loaded macrophages. The effect of HLD3 is maximal at 25-50 micrograms/ml (0.26-0.52 microM) and can be totally abolished by mild nitrosylation (with 3 mM tetranitromethane (TNM)). Data are also presented to indicate that the increased rate of apoE secretion in the presence of HDL3 is not due to a "protective" effect of this lipoprotein on possible proteolytic degradation or cellular reuptake of apoE secreted into the media. The stimulatory effect of HDL on apoE secretion can be clearly dissociated from cholesterol efflux; HDL stimulates apoE secretion from oxysterol-treated cells in the absence of measurable cholesterol efflux, while TNM-HDL promotes substantial cholesterol efflux from cholesterol-loaded cells but has no effect on apoE secretion. The kinetics of apoE synthesis and secretion, determined in short-term labeling studies, demonstrate that under all experimental conditions examined a substantial portion of cellular apoE is not secreted. Furthermore, in cholesterol-loaded cells HDL3 increases apoE secretion essentially by diversion of a greater portion of cellular apoE pool for secretion. While HDL3 has no effect on the rate of apoE synthesis, cellular apoE turns over two-fold faster in cells incubated in the presence of HDL3 than in its absence (t 1/2 = 11 +/- 2 and 22 +/- 4 min, respectively), an observation corresponding well with the changes in the rates of apoE secretion under similar conditions. The HDL3-mediated increase in apoE secretion by cholesterol-loaded macrophages suggests another mechanism by which HDL exerts a protective effect in the development of atherosclerosis; increased contribution to the metabolic pool of apoE by peripheral tissues may lead to a more effective clearance of peripheral cholesterol by the liver (reverse cholesterol transport).  相似文献   

14.
Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.  相似文献   

15.
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.  相似文献   

16.
ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.  相似文献   

17.
Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.  相似文献   

18.
The ATP-binding cassette half-transporters ABCG5 (G5) and ABCG8 (G8) promote secretion of neutral sterols into bile, a major pathway for elimination of sterols. Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a recessive disorder characterized by impaired biliary and intestinal sterol secretion, sterol accumulation, and premature atherosclerosis. The mechanism by which the G5G8 heterodimer couples ATP hydrolysis to sterol transport is not known. Here we examined the roles of the Walker A, Walker B, and signature motifs in the nucleotide-binding domains (NBD) of G5 and G8 using recombinant adenoviruses to reconstitute biliary sterol transport in G5G8-deficient mice. Mutant forms of each half-transporter were co-expressed with their wild-type partners. Mutations at crucial residues in the Walker A and Walker B domains of G5 prevented biliary sterol secretion, whereas mutations of the corresponding residues in G8 did not. The opposite result was obtained when mutations were introduced into the signature motif; mutations in the signature domain of G8 prevented sterol transport, but substitution of the corresponding residues in G5 did not. Taken together, these findings indicate that the NBDs of G5 and G8 are not functionally equivalent. The integrity of the canonical NBD formed by the Walker A and Walker B motifs of G5 and the signature motif of G8 is essential for G5G8-mediated sterol transport. In contrast, mutations in key residues of the NBD formed by the Walker A and B motifs of G8 and the signature sequence of G5 did not affect sterol secretion.  相似文献   

19.
20.
Abstract: Apolipoprotein D (apoD), a member of the lipocalin superfamily of ligand transporters, has been implicated in the transport of several small hydrophobic molecules including sterols and steroid hormones. We have previously established that apoD is a secreted protein from cultured mouse astrocytes and that treatment with the oxysterol 25-hydroxycholesterol markedly stimulates apoD release. Here, we have investigated expression and cellular processing of apoD in the Niemann-Pick type C (NPC) mouse, an animal model of human NPC, which is a genetic disorder affecting cellular cholesterol transport. NPC is phenotypically characterized by symptoms of chronic progressive neurodegeneration. ApoD gene expression was up-regulated in cultured NPC astrocytes and in NPC brain. ApoD protein levels were also increased in NPC brain with up to 30-fold higher apoD content in the NPC cerebellum compared with control mice. Subcellular fractionation of NPC brain homogenates revealed that most of the apoD was associated with the myelin fraction. ApoD was found to be a secreted protein from cultured normal astrocytes and treatment with the oxysterol, 25-hydroxycholesterol, markedly stimulated apoD release (by five- to 10-fold). By contrast, secretion of apoD from NPC astrocytes was markedly reduced and could not be stimulated by oxysterol treatment. Secretion of apoE, another apolipoprotein normally produced by astrocytes, was similar in NPC and control cells. Furthermore, apoE secretion was not potentiated by oxysterol treatment in either cell type. Plasma levels of apoD were sixfold higher in NPC, whereas hepatic levels were substantially reduced compared with controls, possibly reflecting reduced hepatic clearance of the circulating protein. These results reveal hitherto unrecognized defects in apoD metabolism in NPC that appear to be linked to the known defects in cholesterol homeostasis in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号