首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

2.
We sought to investigate the mechanisms by which the calcium ionophore A23187 triggers arachidonic acid release in bovine pulmonary endothelial cells and to test the hypothesis that protein kinase C is involved in this process. Our results indicate that the mechanism by which A23187 increases phospholipase A2 activity and arachidonic acid release in bovine pulmonary arterial endothelial cells depends upon the concentration studied. At concentrations of 1 microM and 2.5 microM, A23187 increases phospholipase A2 activity and arachidonic acid release without stimulating protein kinase C. At concentrations of 5-12.5 microM, A23187 increases arachidonic acid release and phospholipase A2 activity in conjunction with a dose-dependent activation of membrane-bound protein kinase C. To test the hypothesis that these doses of A23187 increase phospholipase A2 activity by stimulating protein kinase C, we studied the effect of prior treatment with the protein kinase C inhibitor sphingosine. Sphingosine inhibits the increase in phospholipase A2 activity and arachidonic acid release caused by A23187 over the range 5-12.5 microM. To investigate further the potential role of protein kinase C, we studied the effects of the inactive phorbol ester 4 alpha-phorbol 12 beta-myristate 13 alpha-acetate (4 alpha-PMA) and an active phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (4 beta PMA). Neither 4 alpha-PMA nor 4 beta-PMA affected basal arachidonic acid release. 4 alpha-PMA also did not augment the effects of A23187. In contrast, 4 beta-PMA significantly augments the increase in phospholipase A2 activity and arachidonic acid release caused by lower doses of A23187. Under these conditions, sphingosine completely inhibits the stimulatory effects of 4 beta-PMA on protein kinase C translocation, phospholipase A2 and arachidonic acid release. Thus, at low doses (1 microM and 2.5 microM) A23187 increases phospholipase A2 activity and arachidonic acid release by a mechanism that does not involve protein kinase C. At these A23187 doses, activating membrane-bound protein kinase C with 4 beta-PMA causes a synergistic increase in phospholipase A2 activity and arachidonic acid release. At higher doses (5-12.5 microM), A23187 acts in large part by stimulating protein kinase C translocation. Overall, our results indicate that activating membrane-bound protein kinase C by itself is an insufficient stimulus to increase phospholipase A2 activity and arachidonic acid release in pulmonary endothelial cells, but activating protein kinase C can substantially augment the increase in phospholipase A2 activity and arachidonic acid caused by a small increase in intracellular calcium.  相似文献   

3.
Aspirin inhibits phospholipase C   总被引:1,自引:0,他引:1  
We have shown previously that aspirin (ASA) ingestion by normal human volunteers inhibits peripheral blood monocyte phospholipase C (PLC) activities ex vivo. In order to explore further the mechanism of action of ASA, normal human monocytes and differentiated human U937 cells were treated with ASA and other salicylates. Cells preincubated with ASA were found to have decreased PLC activities. Phospholipase A2 activities were not affected by salicylates. Sodium salicylate and salicylic acid, nonacetylated relatives of ASA also inhibited PLC activity. This effect was dose and time dependent and addition of cycloheximide or actinomycin D to the preincubation mixture abrogated the inhibitory effect of salicylates on PLC. This PLC inhibitory protein induced by ASA appears distinct from lipocortin, a phospholipase A2 inhibitory protein inducible by corticosteroids.  相似文献   

4.
Our previous work demonstrated that NIH-3T3 cells expressing high levels of the mutated cellular ras oncogene (EJ-ras gene) exhibited reduced hormone-sensitive adenylate cyclase and platelet-derived growth factor-stimulated (PDGF) phospholipase A2/C activities. We now report that although the ras-transformed cells display markedly reduced phospholipase C activity, as measured by the levels of inositol 1,4,5-trisphosphate synthesized after PDGF-stimulation, normal levels of phospholipase A2 activity can be uncovered; thus, similar levels of prostaglandin E2 were synthesized in EJ-ras transformed and control cells after stimulation with phorbol myristate acetate (PMA) and/or the calcium ionophore A-23187, agents which stimulate protein kinase C and intracellular Ca2+ levels, respectively. These data suggest that the EJ-ras gene product uncouples the PDGF receptor from the phospholipase C, resulting in reduced PDGF-stimulated Ca2+ mobilization, protein kinase C stimulation and an apparent decrease in Ca2+-dependent phospholipase A2.  相似文献   

5.
Recent studies indicate that viruses may influence polyphosphoinositide levels. This study has examined the effects of vaccinia virus infection on phospholipase C activity. Infection of BS-C-1 cells, an African Green Monkey kidney cell line, or A431 cells, a human carcinoma cell line, with vaccinia virus inhibits receptor-mediated phospholipase C activation. As a consequence, agonist-mediated Ca2+ mobilization in BS-C-1 cells also was inhibited by vaccinia virus infection. Alleviation of the inhibition of phospholipase C activation was observed in vaccinia virus-infected cells treated with cycloheximide without influencing uninfected cells. Treatment of infected cells with alpha-amanitin, an inhibitor of host mRNA synthesis but not virus mRNA synthesis, failed to alleviate the inhibition of phospholipase C activation. Together these results suggest that a virus-encoded gene product mediates the inhibition of phospholipase C activation without the need of a virus-induced host factor. Analysis of the processes involved in the formation of inositol (1,4,5)-trisphosphate and mobilization of intracellular Ca2+ indicate that the vaccinia virus gene product exerts its inhibitory effects at the level of phospholipase C activity. This may occur by either directly reducing the amount of phospholipase C, reducing the specific activity of phospholipase C, or by inhibiting the association of phospholipase C with its substrate, phosphatidylinositol 4,5-bisphosphate.  相似文献   

6.
Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.  相似文献   

7.
8.
This study evaluates the role of phosphatidylinositol 4,5-bisphosphate (PIP2) and its metabolites as possible mediators in the activation of phospholipases A2 in porcine aortic endothelial cells. We compared the time courses of bradykinin-induced turnover of phosphoinositides and the appearance of unesterified arachidonic acid (uAA) and eicosanoids. The metabolism of phosphoinositides was examined in cells prelabeled with [3H]inositol, which has a similar distribution as the endogenous inositol lipids. At 37 degrees C, bradykinin induced a rapid rise in lysophosphatidylinositol (lyso-PI) and inositol 1,4,5-trisphosphate (IP3) as well as a decrease in PIP2. Lyso-PI formation was detected at 10 s, as early as PIP2 degradation and IP3 formation. This suggests that the activation of PIP2-hydrolyzing phospholipase C and PI-hydrolyzing phospholipase A2 are simultaneous. However, at 30 degrees C, lyso-PI formation was detected in the absence of an increase in IP3 indicating that the activation of phospholipase A2 does not require the accumulation of IP3. The time course of formation of uAA and eicosanoids were examined in [3H]arachidonic acid-prelabeled cells. The 3H radioactivity was distributed among the phospholipid classes and subclasses the same as the endogenous phospholipids. Bradykinin stimulated the intracellular accumulation of uAA, detectable at 5 s, earlier than that of 1,2-diacylglycerol and phosphatidic acid. Such immediate formation of uAA further supports the notion that activation of phospholipase A2 is a very early event during the interaction of bradykinin with porcine endothelial cells, and that PIP2 hydrolysis is not prerequisite for the initial activation of phospholipase A2.  相似文献   

9.
Treatment of guinea pig lymphocytes with Clostridium perfringens phospholipase C but not with Naja naja snake venom phospholipase A2 increased ornithine decarboxylase activity. The increase in ornithine decarboxylase activity was suppressed by actinomycin D or cycloheximide, suggesting that de novo syntheses of RNA and protein are necessary for the increase in the enzyme activity. These results suggest that the activation of phospholipase C rather than that of phospholipase A2 is responsible for induction of ornithine decarboxylase during lymphocyte transformation.  相似文献   

10.
Epidermal growth factor (EGF) enhances vasopressin- and ionophore-A23187-induced prostaglandin production and arachidonate release by rat glomerular mesangial cells in culture. The purpose of the present study was to delineate the phospholipid pathways involved in this effect. In cells labelled with [14C]arachidonate, EGF significantly enhanced the free arachidonate released in response to A23187 or vasopressin without enhancing the production of [14C]arachidonate-labelled diacylglycerol. EGF increased the [14C]arachidonate-labelled phosphatidic acid formed in response to vasopressin, but to a much smaller extent than it increased free arachidonate release. These results indicate that activation of phospholipase C is not sufficient to explain the increase in free arachidonate release observed on addition of EGF. To examine if EGF enhanced phospholipase A2 activity, mesangial cells were labelled with [2-2H]glycerol and [14C]-arachidonate, and the formation of arachidonate-poor lysophospholipids was studied. When combined with vasopressin, EGF significantly enhanced the formation of arachidonate-poor lysophospholipids as compared with vasopressin alone. The fate of exogenously added lysophosphatidylcholine was not altered after stimulation with vasopressin plus EGF, indicating that decreased deacylation or reacylation of the lysophospholipids was not responsible for their accumulation. Taken together, these results indicate that EGF enhances free arachidonate release by activation of phospholipase A2. The signalling mechanism responsible for the change in phospholipase A2 activity is not known, but could conceivably involve phosphorylation of modulating proteins such as lipocortin or G-proteins.  相似文献   

11.
Resident mouse peritoneal macrophages have three phospholipase activities: a phospholipase A2 active at pH 4.5, a Ca2+-dependent phospholipase A2 active at pH 8.5 and a phosphatidylinositol-specific phospholipase C activity. When macrophages are exposed to zymosan in culture, the cellular activity of pH-4.5 phospholipase A2 is diminished in a manner dependent on zymosan concentration and time of exposure, whereas the cellular activities of pH-8.5 phospholipase A2 and phospholipase C remain unchanged. The depletion of pH-4.5 phospholipase A2 activity from the cell is paralleled by a quantitative recovery of this activity in the culture medium in a manner similar to the cellular depletion and extracellular recovery of two lysosomal enzymes. This release is specifically elicited by an inflammatory substance such as zymosan, since macrophages incubated with 6 micrometer latex spheres retain pH-4.5 phospholipase A2 activity and lysosomal enzyme activities intracellularly.  相似文献   

12.
Human erythroleukaemia (HEL) cells were exposed to thrombin and other platelet-activating stimuli, and changes in radiolabelled phospholipid metabolism were measured. Thrombin caused a transient fall in PtdInsP and PtdInsP2 levels, accompanied by a rise in diacylglycerol and phosphatidic acid, indicative of a classical phospholipase C/diacylglycerol kinase pathway. However, the rise in phosphatidic acid preceded that of diacylglycerol, which is inconsistent with phospholipase C/diacylglycerol kinase being the sole source of phosphatidic acid. In the presence of ethanol, thrombin and other agonists (platelet-activating factor, adrenaline and ADP, as well as fetal-calf serum) stimulated the appearance of phosphatidylethanol, an indicator of phospholipase D activity. The Ca2+ ionophore A23187 and the protein kinase C activator phorbol myristate acetate (PMA) also elicited phosphatidylethanol formation, although A23187 was at least 5-fold more effective than PMA. Phosphatidylethanol production stimulated by agonists or A23187 was Ca2(+)-dependent, whereas that with PMA was not. These result suggest that phosphatidic acid is generated in agonist-stimulated HEL cells by two routes: phospholipase C/diacylglycerol kinase and phospholipase D. Activation of the HEL-cell phospholipase D in response to agonists may be mediated by a rise in intracellular Ca2+.  相似文献   

13.
The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5'-[gamma-thio]triphosphate (ATP[S]), adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.  相似文献   

14.
Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the cell membrane, it did not inhibit the cPLA2 activity and AA release caused by both low and high doses of A23187.  相似文献   

15.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

16.
Bradykinin stimulation of inositol polyphosphate production was followed using [3H]inositol-labeled porcine aortic endothelial cells grown in culture. Bradykinin stimulated a significant increase in inositol trisphosphate (IP3) production within 15 s. This increase reached a maximum value of 5-fold above control at 30 s and returned toward baseline by 90 s. Production of inositol bisphosphate increased with time reaching 4-fold by 60 s. Bradykinin stimulated the production of IP3 and inositol biphosphate in a dose-dependent manner with an EC50 of 9 X 10(-9) M. Labeled pools of phosphatidylinositol-4,5-bisphosphate (PIPP) decreased by 50% within 30 s, corresponding to the rise in IP3, while labeled lysophosphatidylinositol pools increased 3-fold by 60 s. Pertussis toxin, a protein which ribosylates GTP-binding proteins, did not inhibit bradykinin-stimulated inositol polyphosphate production. Incubation of labeled cells in the absence of extracellular Ca2+ also did not affect bradykinin-stimulated inositol polyphosphate production. Further, A23187, a Ca2+ ionophore, failed to stimulate PIPP metabolism. Finally, Ca2+ influx into cell monolayers occurred with a time course which paralleled rather than preceded the increase in IP3 levels. These data suggest that bradykinin stimulates phospholipase C metabolism of PIPP to IP3 by a mechanism which does not contain a pertussis toxin sensitive GTP-binding protein. Also, this receptor-linked phospholipase C activity does not appear to be activated by extracellular Ca2+ influx. The results support the proposal that IP3 production initiates Ca2+ mobilization and suggest that the calcium-dependent step in arachidonate release is distal to IP3 production.  相似文献   

17.
The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.  相似文献   

18.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

19.
Human platelets exposed to the Ca2+ ionophore A23187 form cyclo-oxygenase metabolites from liberated arachidonic acid and secrete dense granule substituents such as ADP. I have shown previously that A23187 causes activation of phospholipase A2 and some stimulation of phospholipase C. I now report that, in contrast to the case for thrombin, the activation of phospholipase C in response to ionophore is completely dependent upon the formation of cyclo-oxygenase products and the presence of ADP. The addition of A23187 to human platelets induces a transient drop in the amount of phosphatidylinositol 4,5-bisphosphate, a decrease in the amount of phosphatidylinositol, and the formation of diacylglycerol and phosphatidic acid. In addition, lysophosphatidylinositol and free arachidonic acid are produced. The presence of cyclo-oxygenase inhibitors or agents which remove ADP partially impairs these changes. When both types of inhibitor are present, the changes in phosphatidylinositol 4,5-bisphosphate and the formation of diacylglycerol and phosphatidic acid are blocked entirely, whereas formation of lysophosphatidylinositol and free arachidonic acid are relatively unaffected. The prostaglandin H2 analogue U46619 activates phospholipase C. This stimulation is inhibited partially by competitors for ADP. I conclude that phospholipase C is not activated by Ca2+ in the platelet, and suggest that stimulation is totally dependent upon a receptor coupled event.  相似文献   

20.
Rat group II phospholipase A2 added exogenously to A23187-activated HL-60 granulocytes augmented their production of prostaglandin E2. Human group II phospholipase A2 and porcine group I phospholipase A2 augmented the prostaglandin E2 production in a similar manner. No significant increase in prostaglandin E2 production was observed when cells were treated with purified phospholipase A2 in the absence of A23187. Extracellular phospholipase A2 at inflamed sites may contribute to the generation of pro-inflammatory lipid mediators by hydrolyzing the cellular phospholipids of activated inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号