首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Alcaligenes eutrophus ATCC17697 was optimized using a fed-batch culture system. The concentration of propionic acid was maintained at 3 g l–1 as growth was inhibited by propionic acid in the broth. A pH-stat substrate feeding system was used in which propionic acid was fed automatically to maintain a pH of the culture broth at 7.0. By feeding a substrate solution containing 20% (w/v) propionic acid, 4.9% (w/v) ammonia water [at a molar ratio of carbon to nitrogen (C/N molar ratio) of 10] in cell growth phase, the concentration of propionic acid in the broth was maintained at 3 g l–1 giving a specific growth rate of 0.4 h–1. To promote P(3HB-co-3HV) production, two stage fed-batch culture which consisted of the stage for the cell growth and the stage for the P(3HB-co-3HV) accumulation was carried out. When the substrate solution whose C/N molar ratio was 50 was fed in P(3HB-co-3HV) accumulation phase, the cell concentration and the P(3HB-co-3HV) content in the cells reached 64 g l–1 and 58% (w/w) in 55.5 h, respectively.  相似文献   

2.
Summary Production of 2,3-butanediol byKlebsiella oxytoca was enhanced in the presence of low levels (<8 g/l) of added sodium lactate. Cell growth was inhibited, however, and essentially stopped above 15 g/l added lactate. Levels of by-products (acetic acid and ethanol) were also higher. With 3 g/l lactate and an initial glucose level of 98 g/l, butanediol concentration and productivity increased 164% with 98% utilization of glucose. With high glucose concentration (219 g/l), addition of 2.64 g/l lactate after the growth phase resulted in 81 g/l butanediol, with a productivity of 0.65 g/l/h and 71% glucose utilization.  相似文献   

3.
Fed-batch propionic and acetic acid fermentations were performed in semi-defined laboratory medium and in corn steep liquor withPropionibacterium acidipropionici strain P9. On average, over four experiments, 34.5 g/l propionic acid and 12.8 g/l acetic acid were obtained in about 146 h in laboratory medium with 79 g/l glucose added over five feeding periods. The highest concentration of propionic acid, 45 g/l, was obtained when the glucose concentration was not allowed to drop to zero. In corn steep liquor 35 g/l propionic acid and 11 g/l acetic acid were produced in 108 h from 59.4 g/l total lactic acid provided as seven feedings of corn steep liquor. Extractive fed-batch fermentations were conducted in semi-defined medium using either flat-sheet-supported liquid membranes or hollow-fiber membrane extraction to remove organic acids from the culture medium. As operated during the course of the fermentation, these systems extracted 25% and 22% of the acetic acid and 36.5% and 44.5% of the propionic acid, respectively, produced in the fermentation. Total amounts of acids produced were about the same as in comparable nonextractive fermentations: 30–37 g/l propionic acid and 13 g/l acetic acid were produced in 150 h. Limitations on acid production can be attributed to limited substrate feed, not to failure of the extraction system.Journal paper J-16303 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project 3122.  相似文献   

4.
Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 × 109 cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%–70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semidefined medium, dilution rates up to 0.31 h–1 could be used, which gave higher volumetric productivities (0.96 g l–1 h–1 for propionic acid and 0.26 g l–1 h–1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria.Journal paper no. J- 15614 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. 3122  相似文献   

5.
G. Du  Y. Si  J. Yu 《Biotechnology letters》2001,23(19):1613-1617
Medium-chain-length fatty acids, such as nonanoic (9:0) and octanoic (8:0) acids, are more toxic to Ralstonia eutropha than volatile fatty acids such as acetic, propionic and butyric acids. Nonanoic acid was degraded to acetic and propionic acids via -oxidation by Ralstonia eutropha for cell growth and synthesis of polyhydroxyalkanoates (PHAs). In a mixture of the fatty acids, utilization of nonanoic acid was depressed by acetic and propionic acids, and vice versa. The PHA accumulation from the volatile fatty acids was decreased from 53% (w/w) of dry cell mass to 23% due to the nonanoic acid. Similar phenomena were also observed with octanoic acid and its metabolic intermediates, acetic and butyric acids.  相似文献   

6.
Yeast belonging to the genera Brettanomyces and Dekkera are noted for spoiling cellar and bottled wine through the production of haze, turbidity and acetic acid. However, I was unable to find information on the use of these yeasts for the expressed purpose of acetic acid production. Sixty yeast strains belonging to these, and several other genera, from the ARS Culture Collection, Peoria, IL, were screened for their ability to produce both ethanol and/or acetic acid. For ethanol production, the strains were grown anaerobically at 24 and 30 °C in batch culture using glucose (100 g/l) as the carbon/energy source. For acetic acid production, the strains were grown aerobically in batch culture using either glucose (100 g/l) or ethanol (35 g/l) as the carbon/energy source. In the initial ethanol production screen, 19 strains produced at least 45 g ethanol/l. In the initial acetic acid screen, 28 of the yeast strains produced at least 5 g acetic acid/l from 100 g glucose/l, while 23 strains produced at least 5 g acetic acid/l from 35 g ethanol/l.  相似文献   

7.
With a cell concentration of 125 g dry biomass 1–1 and a dilution rate of 0.1 h–1,Propionibacterium acidipropionici produces 30 g propionic acid 1–1 from sugar with a productivity of 3 g 1–1 h–1. The yield of propionic acid is approx. 0.36–0.45 g propionic acid g–1 sucrose and is independent of the dilution rate and cell concentration. Acetic acid is an unwanted by-product in the production of propionic acid. The concentration of acetic acid only increases slightly when the cell concentration is increased. A two-stage fermentation process was developed for the conversion of sugar or molasses of various types to propionic acid and vitamin B12. By fermentation of blackstrap molasses (from sugar beet and sugar cane) in the first fermentation stage 17.7 g propionic acid 1–1 with a yield of 0.5 g propionic acid g–1 carbohydrate was produced with a dilution rate of 0.25 h–1. In the second stage 49 mg vitamin B12 1–1 was produced at a dilution rate of 0.03 h–1.  相似文献   

8.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

9.
Batch propionic acid fermentation of lactose by Propionibacterium acidipropionici were studied at various pH values ranging from 4.5 to 7.12. The optimum pH range for cell growth was between 6.0 and 7.1, where the specific growth rate was approximately 0.23 h(-1). The specific growth rate decreased with the pH in the acids have been identified as the two major fermentation products from lactose. The production of propionic acid was both growth and nongrowth associated, while acetic acid formation was closely associated with cell growth. The propionic acid yield increased with decreasing pH; It changed from approximately 33% (w/w) at pH 6.1-7.1 to approximately 63% at pH 4.5-5.0. In contrast, the acetic acid yield was not significantly affected by the pH; it remained within the range of 9%-12% at all pH values. Significant amounts of succinic and pyruvic acids were also formed during propionic acid fermentation of lactose. However, pyruvic acid was reconsumed and disappeared toward the end of the fermentation. The succinic acid yield generally decreased with the pH, from a high value of 17% at pH 7.0 to a low 8% at pH 5.0 Effects of growth nutrients present in yeast ex-tract on the fermentation were also studied. In general, the same trend of pH effects was found for fermentations with media containing 5 to 10 g/L yeast extract. However, More growth nutrients would be required for fermentations to be carried out efficienytly at acidic pH levels.  相似文献   

10.
Summary Batch propionic acid fermentations by Propionibacterium acidipropionici with lactose, glucose, and lactate as the carbon source were studied. In addition to propionic acid, acetic acid, succinic acid and CO2 were also formed from lactose or glucose. However, succinic acid was not produced in a significant amount when lactate was the growth substrate. Compared to fermentations with lactose or glucose at the same pH, lactate gave a higher propionic acid yield, lower cell yield, and lower specific growth rate. The specific fermentation or propionic acid production rate from lactate was, however, higher than that from lactose. Since about equimolar acid products would be formed from lactate, the reactor pH remained relatively unchanged throughout the fermentation and would be easier to control when lactate was the growth substrate. Therefore, lactate would be a preferred substrate over lactose and glucose for propionic acid production using continuous, immobilized cell bioreactors. Correspondence to: S. T. Yang  相似文献   

11.
Among amino acids screened for their potential to relieve wild and recombinant Escherichia coli from the negative effects of acetic acid, glycine, and methionine showed a sparing effect. In the presence of 2 g/L of acetic acid, addition of 0.5 g/L of glycine or methionine resulted in either a complete recovery or a further enhancement in the specific growth rate, while the enhancement was significant but not fully complete in the presence of 4 g/L of acetic acid. The addition of 0.5 g/L of methionine alleviated the negative effect of acetic acid on recombinant E. Coli growth to produce more beta-lactamase, which was encoded by plasmid pUC18. In continuous fermentation the methionine effect on recombinant. E. coli metabolism depended on dilution rate; at high dilution rates, above 0.4 h(-1), the methionine addition enhanced beta-lactamase production and reduced acetic acid formation, while at low dilution rates, below 0.3 h (-1), the effect was reversed. In def-batch fermentation with wild-type E. Coli, cell growth rate and cell yield from glucose were enhanced with methionine addition, while the acetic acid concentration reached over 4 g/L. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
Summary The acetic acid concentration in a batch culture of Acetobacter aceti M23 increased up to 90 g/l by adding ethanol intermittently. Although the bacterial cells ceased growth at about 60 g acetic acid/l, non-viable cells still preserved ethanol oxidation activity. Cell recycling by filtration in a repeated fed-batch culture increased the overall acetic acid production rate 2.84-fold compared to that without cell recycling for the purpose of obtaining an acetic acid concentration of 80.8 g/l. Repeated fed-batch cultivation with cell recycle was effective for increasing the production rate of acetic acid and obtaining high amounts close to a lethal concentration (90 g/l).Offprint requests to: Kiyoshi Toda  相似文献   

13.
An automatically controlled, glucose-fed, anaerobic digester was deliberately inhibited by addition of phenol. To overcome the phenol inhibition the feed dilution rate was lowered in such a way that the methane yield from glucose was kept the same as that under normal conditions. The concentrations of acetic and butyric acids remained below 100 mg/l, however, propionic acid accumulated to 2,750 mg/l. Phenol apparently inhibited all tropic groups of organisms and it was shown that the propionic acid was formed from the metabolism of phenol. From the nature of the operating strategy, it was deduced that the digester continued to convert all the glucose that was supplied to methane showing that propionic acid accumulation did not inhibit conversion of glucose to methane. Therefore, propionic acid accumulation may be an effect and not a cause of inhibition of the anaerobic digestion process.  相似文献   

14.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

15.
Large amounts of crude glycerol produced in the biodiesel industry can be used as a low-cost renewable feedstock to produce chemicals and fuels. Compared to sugars (sucrose, glucose, xylose, etc.), glycerol has a lower reducing level, which is of benefit to the production of reduced chemicals. In this work, glycerol as the sole carbon source in propionic acid fermentation by metabolically engineered Propionibacterium acidipropionici (ACK-Tet) was studied. It was found that the adapted ACK-Tet mutant could use glycerol for its growth and produced propionic acid at a high yield of 0.54–0.71 g/g, which was much higher than that from glucose (0.35 g/g). In addition, the production of acetic acid in glycerol fermentation was much less than that from glucose. Thus, glycerol fermentation produced a high purity propionic acid with a high propionic acid to acetic acid ratio of 22.4 (vs. 5 for glucose fermentation), facilitating the recovery and purification of propionic acid from the fermentation broth. The highest propionic acid concentration obtained from glycerol fermentation was 106 g/L, which was 2.5 times of the highest concentration (42 g/L) previously reported in the literature.  相似文献   

16.
The effect of different initial acetic acid concentrations on the growth of and lipid and gamma-linolenic acid (GLA) production byMucor circinelloides CBS 203.28 was determined in a 14 litre stirred tank reactor operated in a fedbatch, pH-stat mode with acetic acid as carbon source and pH titrant. Increased acetic acid concentrations in the culture resulted in a significant increase in the crude oil content of the biomass. By contrast, all the other parameters such as the biomass concentration, GLA and oil yield on acetic acid, the GLA content of the biomass and oil, the growth rate and volumetric rate of GLA production decreased with an increase in acetic acid concentration. The best results were obtained with acetic acid at 2 g/1, which gave 39.8 mg GLA/g biomass and 15.6% GLA in the neutral lipid fraction, amounting to 340 mg GLA/1 culture. A decrease in the glyco- and phospho-lipid fractions during the cultivation coincided with an increase in the neutral lipid fraction. The GLA content of the biomass remained within rather narrow limits of 3.5% to 4% of the biomass, irrespective of the oil content of the biomass. The fatty acid profile was not greatly affected by the acetic acid concentration. The hyphae of the fungus were characterized by the accumulation of large intracellular oil droplets and some septa delimited the hyphae.  相似文献   

17.
The growth and product formation kinetics of the bovine pathogen Mannheimia (Pasteurella) haemolytica strain OVI-1 in continuous culture were investigated. The leukotoxin (LKT) concentration and yield on biomass could substantially be enhanced by supplementation of a carbon-limited medium with an amino acid mixture or a mixture of cysteine and glutamine. Acetic acid was a major product, increasing to 1.66 g l(-1) in carbon-limited chemostat culture at intermediate dilution rates and accounting for more than 80% of the glucose carbon, whereas in amino acid-limited cultures high acetic acid concentrations were produced at low dilution rates, suggesting a carbon-overflow metabolism. The maintenance coefficients of carbon-limited and carbon-sufficient cultures were 0.07 and 0.88 mmol glucose g(-1) h(-1), respectively. LKT production was partially growth-associated and the LKT concentration was maximised to 0.15 g l(-1) and acetic acid production minimised by using a carbon-limited medium and a low dilution rate.  相似文献   

18.
Cell growth and organic acid production by Propionibacteria are dependent on the vitamin-nitrogen source in the culture medium. Final cell and propionic acid concentrations produced by Propionibacterium shermanii, using corn-steep liquor, were higher than those obtained utilizing yeast extracts. Since corn-steep liquor is much cheaper than yeast extract, the process becomes more attractive. By calculating the specific growth rates, it was observed that the critical propionic acid concentration, that prevents all growth (μX = 0), is different depending on the vitamin-nitrogen source used and its concentration. For example, for 5.0 and 15.0 g/l Oxoid yeast extract, those critical propionic acid concentrations were 16.0 and 27.0 g/l, respectively. Such propionic acid concentrations inhibit the cell growth, but not the formation of acid. The specific propionic acid production rate also indicates that the critical concentration for metabolic activity, when propionic acid is no longer produced (μP = 0), varies according to the vitamin-nitrogen source and its concentration in the medium. For 5.0 and 15.0 g/l Oxoid yeast extract, those concentrations were 22.1 and 30.1 g/l, respectively.  相似文献   

19.
The potential use of spin filter device to retainPropionibacterium acidipropionici in the bioreactor under continuous mode of fermentation and improve propionic acid productivity, was examined. The yield of propionic acid based on lactose concentration was 51% in batch and 54% in continuous (dilution rate=0.05 h−1) operation. The yield in continuous fermentation with cell retention using spin filter of 10 micron size (dilution rate=0.05 h−1) was even higher at 70% (w/w). The volumetric productivity under batch and continuous mode of operation were 0.312 g L−1 h−1 and 0.718 g L−1 h−1 respectively. Continuous fermentation with cell retention demonstrated even higher volumetric productivities at 0.98 g L−1 h−1 with out clogging problems It could be used for utilization of cheese whey to produce propionic acid at higher yield and productivities.  相似文献   

20.
Summary The formation of acetic acid by the thermophilic nonsporeforming homoacetogenic bacterium Acetogenium kivui was studied under various conditions. In pH-controlled batch fermentation at pH 6.4 this bacterium was able to produce up to 625 mM of acetic acid from glucose within 50–60 h. The value of max obtained was about 0.17 h-1, the yield was about 2.55 mol of acetic acid per mol of glucose utilized. In continuous fermentation both substrate concentration and dilution rate (D) influenced the yield of acetate and the stationary concentration: a glucose concentration of 67 mM at D=0.09 h-1 resulted in 2.82 mol acetate/mol glucose and 190 mM acetate at a production rate of 17.1 mM/1 h. When the dilution rate was increased the production rate reached a maximal value of 43.2 mM/1 h at D=0.32 h-1. At a glucose concentration of 195 mM the dependence of yield upon dilution rate followed a similar pattern and an acetate concentration of 420 mM could be obtained. Enzymatic studies indicate that in A. kivui pyruvate ferredoxin-oxidoreductase and acetate kinase are inhibited at acetate concentrations higher than 800 mM. Based on these results a fed-batch fermentation was developed, which allowed to produce more than 700 mM acetic acid within 40–50 h.Dedicated to Prof. Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号