首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arsenic resistance (ars) operon from plasmid pKW301 of Acidiphilium multivorum AIU 301 was cloned and sequenced. This DNA sequence contains five genes in the following order: arsR, arsD, arsA, arsB, arsC. The predicted amino acid sequences of all of the gene products are homologous to the amino acid sequences of the ars gene products of Escherichia coli plasmid R773 and IncN plasmid R46. The ars operon cloned from A. multivorum conferred resistance to arsenate and arsenite on E. coli. Expression of the ars genes with the bacteriophage T7 RNA polymerase-promoter system allowed E. coli to overexpress ArsD, ArsA, and ArsC but not ArsR or ArsB. The apparent molecular weights of ArsD, ArsA, and ArsC were 13,000, 64,000, and 16,000, respectively. A primer extension analysis showed that the ars mRNA started at a position 19 nucleotides upstream from the arsR ATG in E. coli. Although the arsR gene of A. multivorum AIU 301 encodes a polypeptide of 84 amino acids that is smaller and less homologous than any of the other ArsR proteins, inactivation of the arsR gene resulted in constitutive expression of the ars genes, suggesting that ArsR of pKW301 controls the expression of this operon.  相似文献   

2.
3.
Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.  相似文献   

4.
Arsenic, a toxic metalloid widely existing in the environment, causes a variety of health problems. The ars operon encoded by Escherichia coli plasmid R773 has arsD and arsA genes, where ArsA is an ATPase that is the catalytic subunit of the ArsAB As(III) extrusion pump, and ArsD is an arsenic chaperone for ArsA. ArsD transfers As(III) to ArsA and increases the affinity of ArsA for As(III), allowing resistance to environmental concentrations of arsenic. Cys12, Cys13 and Cys18 in ArsD form a three sulfur-coordinated As(III) binding site that is essential for metallochaperone activity. ATP hydrolysis by ArsA is required for transfer of As(III) from ArsD to ArsA, suggesting that transfer occurs with a conformation of ArsA that transiently forms during the catalytic cycle. The 1.4 Å x-ray crystal structure of ArsD shows a core of four ??-strands flanked by four ??-helices in a thioredoxin fold. Docking of ArsD with ArsA was modeled in silico. Independently ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected. The locations of the mutations mapped on the surface of ArsD are consistent with the docking model. The results suggest that the interface with ArsA involves one surface of ??1 helix and metalloid binding site of ArsD.  相似文献   

5.
The toxic metalloid arsenic is widely disseminated in the environment and causes a variety of health and environment problems. As an adaptation to arsenic-contaminated environments, organisms have developed resistance systems. Many ars operons contain only three genes, arsRBC. Five gene ars operons have two additional genes, arsD and arsA, and these two genes are usually adjacent to each other. ArsA from Escherichia coli plasmid R773 is an ATPase that is the catalytic subunit of the ArsAB As(III) extrusion pump. ArsD was recently identified as an arsenic chaperone to the ArsAB pump, transferring the trivalent metalloids As(III) and Sb(III) to the ArsA subunit of the pump. This increases the affinity of ArsA for As(III), resulting in increased rates if extrusion and resistance to environmentally relevant concentrations of arsenite. ArsD is a homodimer with three vicinal cysteine pairs, Cys12–Cys13, Cys112–Cys113 and Cys119–Cys120, in each subunit. Each vicinal pair binds one As(III) or Sb(III). ArsD mutants with alanines substituting for Cys112, Cys113, Cys119 or Cys120, individually or in pairs or truncations lacking the vicinal pairs, retained ability to interact with ArsA, to activate its ATPase activity. Cells expressing these mutants retained ArsD-enhanced As(III) efflux and resistance. In contrast, mutants with substitutions of conserved Cys12, Cys13 or Cys18, individually or in pairs, were unable to activate ArsA or to enhance the activity of the ArsAB pump. It is proposed that ArsD residues Cys12, Cys13 and Cys18, but not Cys112, Cys113, Cys119 or Cys120, are required for delivery of As(III) to and activation of the ArsAB pump.  相似文献   

6.
7.
Resistance to arsenate conferred on Escherichia coli by the ars operon of plasmid R773 requires both the product of the arsC gene and reduction of arsenate to arsenate. A genetic analysis was performed to identify the source of reducing potential in vivo. in addition to the ars genes, arsenate resistance required the products of the gor gene for glutathione reductase and the gshA and gshB genes for glutathione synthesis. Mutations in the trx and grx genes for thioredoxin and glutaredoxin, respectively, had no effect on arsenate resistance. Although resistance required the arsC gene, the rate of reduction of arsenate to arsenate was nearly the same in cells lacking the ars operon. In strains deficient in glutathione biosynthesis this endogenous reduction was greatly diminished, and cells exhibited increased sensitivity to arsenate. When glutathione was supplied exogenously to such mutants, resistance was restored only to cells expressing the ars operon, and only such cells had detectable arsenate reduction after addition of glutathione. Since ArsC-catalysed reduction of arsenate provides high level resistance, physical coupling of the ArsC reaction to efflux of the resulting arsenite is hypothesised.  相似文献   

8.
arsR, the first gene of the Staphylococcus xylosus (pSX267) arsenic/antimonite resistance (rs) operon encodes a negative regulatory protein, ArsR, which mediates inducibility of the resistances by arsenic and antimony compounds. ArsR, which has no obvious DNA-binding motif in its primary structure, was purified from an ArsR-overproducing Escherichia coli strain and identified as a DNA-binding protein by its behaviour in gel mobility shift assays. ArsR had a specific affinity for a 312 by DNA restriction fragment carrying the ars promoter; the minimum sequence complexed by ArsR was a 75 by polymerase chain reaction (PCR) fragment, which mainly comprised the –35 and –10 regions of the promoter. The effect of inducers on the DNA-binding activity of ArsR was examined by in vitro induction assays; only arsenite inhibited DNA-binding of the repressor. DNase I footprinting revealed two protected regions within the promoter region, spanning 23 and 9 nucleotides, respectively. Furthermore, a new cleavage site for DNase I between the protected regions was made accessible by binding of the repressor. The footprints cover a region of three inverted repeats located between the –35 and –10 motifs of the ars promoter. By high resolution footprinting with the hydroxy radical, five sites of close contact between the protein and DNA were identified.  相似文献   

9.
Arsenic (As) is a very toxic metalloid to a great number of organisms. It is one of the most important global environmental pollutants. To resist the arsenate invasion, some microorganisms have developed or acquired genes that permit the cell to neutralize the toxic effects of arsenic through the exclusion of arsenic from the cells. In this work, two arsenic resistance genes, arsA and arsC, were identified in three strains of Rhizobium isolated from nodules of legumes that grew in contaminated soils with effluents from the chemical and fertilizer industry containing heavy-metals, in the industrial area of Estarreja, Portugal. The arsC gene was identified in strains of Sinorhizobium loti [DQ398936], Rhizobium leguminosarum [DQ398938] and Mesorhizobium loti [DQ398939]. This is the first time that arsenic resistance genes, namely arsC, have been identified in Rhizobium leguminosarum strains. The search for the arsA gene revealed that not all the strains with the arsenate reductase gene had a positive result for ArsA, the ATPase for the arsenite-translocating system. Only in Mesorhizobium loti was the arsA gene amplified [DQ398940]. The presence of an arsenate reductase in these strains and the identification of the arsA gene in Mesorhizobium loti, confirm the presence of an ars operon and consequently arsenate resistance.  相似文献   

10.
arsR, the first gene of the Staphylococcus xylosus (pSX267) arsenic/antimonite resistance (rs) operon encodes a negative regulatory protein, ArsR, which mediates inducibility of the resistances by arsenic and antimony compounds. ArsR, which has no obvious DNA-binding motif in its primary structure, was purified from an ArsR-overproducing Escherichia coli strain and identified as a DNA-binding protein by its behaviour in gel mobility shift assays. ArsR had a specific affinity for a 312 by DNA restriction fragment carrying the ars promoter; the minimum sequence complexed by ArsR was a 75 by polymerase chain reaction (PCR) fragment, which mainly comprised the ?35 and ?10 regions of the promoter. The effect of inducers on the DNA-binding activity of ArsR was examined by in vitro induction assays; only arsenite inhibited DNA-binding of the repressor. DNase I footprinting revealed two protected regions within the promoter region, spanning 23 and 9 nucleotides, respectively. Furthermore, a new cleavage site for DNase I between the protected regions was made accessible by binding of the repressor. The footprints cover a region of three inverted repeats located between the ?35 and ?10 motifs of the ars promoter. By high resolution footprinting with the hydroxy radical, five sites of close contact between the protein and DNA were identified.  相似文献   

11.
The conjugative transposon Tn916moves intercellularly via an excision/insertion mechanism that involves products ofint-Tnandxis-Tn.Tn5-insertion mutations in these genes were found to be complemented in anEnterococcus faecalishost by specific coresident transposons harboring the corresponding wild-type allele. A determinant designatedtraA,partially overlapping and divergently transcribed fromxis-Tn,is thought to encode a key positively acting regulatory protein needed for expression of conjugation functions. This locus was also shown to express atrans-acting product.  相似文献   

12.
13.
The ArsA ATPase is the catalytic subunit of the ArsAB As(III) efflux pump. It receives trivalent As(III) from the intracellular metallochaperone ArsD. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. A number of arsA genes with multiple mutations were isolated. These were analyzed in more detail by separation into single arsA mutants. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant in yeast two-hybrid assays. Each of the three single ArsA mutants also interacted with wild type ArsD. Only the Q56R ArsA derivative exhibited significant metalloid-stimulated ATPase activity in vitro. Purified Q56R ArsA was stimulated by wild type ArsD and to a lesser degree by the quadruple ArsD derivative. The F120I and D137V ArsAs did not show metalloid-stimulated ATPase activity. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. We predict that mutations in ArsA propagate changes in hydrogen bonding and salt bridges to the ArsA–ArsD interface that affect their interactions.  相似文献   

14.
15.
16.
17.
The nucleotide sequence downstream of the grp gene, encoding the glutamate uptake regulatory protein of Zymomonas mobilis, was determined. Three clustered genes (gluE, gluM, and gluP) close to ghe grp gene, but on the opposite strand, were identified. These genes encode a high-affinity transport system for glutamate and aspartate. The gluP gene product is a polypeptide of 25.4 kDa and contains segments with significant similiarity to the ATP-binding proteins of binding-protein-dependent transport systems. The GluM polypeptide (22.9 kDa) is highly hydrophobic and consists of four potential membrane-spanning domains. The hydrophilic gluE gene product, with a molecular mass of 22.1 kDa, contains a region with sequence similiarity to some of the periplasmic binding proteins and a sequence motif of a signal peptide for periplasmic localization. The transport system could not be functionally expressed in Z. mobilis. However, when heterologously expressed in Escherichia coli, it catalyzed uptake of glutamate, which was characterized kinetically. Our results suggest that the glutamate transport system encoded by the gluEMP operon is repressed in Z. mobilis by the regulatory protein Grp. Received: 18 September 1995 / Accepted: 14 February 1996  相似文献   

18.
19.
Toxic organoarsenicals enter the environment from biogenic and anthropogenic activities such as microbial methylation of inorganic arsenic and pentavalent herbicides such as monosodium methylarsenate (MSMA or MAs(V)). Trivalent MAs(III) is considerably more toxic than arsenite or arsenate. Microbes have evolved mechanisms to detoxify organoarsenicals. We previously identified ArsV, a flavin-linked monooxygenase and demonstrated that it confers resistance to methylarsenite by oxidation to methylarsenate. The arsV gene is usually in an arsenic resistance (ars) operon controlled by an ArsR repressor and adjacent to a methylarsenite efflux gene, either arsK or a gene for a putative transporter. Here we show that Paracoccus sp. SY oxidizes methylarsenite. It has an ars operon with three genes, arsR, arsV and a transport gene termed arsW. Heterologous expression of arsV in Escherichia coli conferred resistance to MAs(III), while arsW did not. Co-expression of arsV and arsW increased resistance compared with either alone. The cells oxidized methylarsenite and accumulated less methylarsenate. Everted membrane vesicles from E. coli cells expressing arsW-accumulated methylarsenate. We propose that ArsV is a monooxygenase that oxidizes methylarsenite to methylarsenate, which is extruded by ArsW, one of only a few known pentavalent organoarsenical efflux permeases, a novel pathway of organoarsenical resistance.  相似文献   

20.
Aspergillus nidulans is an excellent experimental organism for the study of gene regulation. Genetic and molecular analyses oftrans-acting andcis-acting mutations have revealed a complex pattern of regulation involving multiple independent controls. Expression of theamdS gene is regulated by thefacB andamdA genes which encode positively acting regulatory proteins mediating a major and a minor form of acetate induction respectively. The product of theamdR gene mediates omega amino acid induction ofamdS. The binding sites for each of these proteins have been localised throughamdS cis-acting mutations which specifically affect the interaction with the regulatory protein. The global controls of nitrogen metabolite repression and carbon catabolite repression regulate the expression of many catabolic genes, includingamdS. Nitrogen control is exerted through the positively actingareA gene product and carbon control is dependent on thecreA gene product. Each of the characterized regulatory genes encodes a DNA-binding protein which recognises particular sequences in theamdS promoter to activate or repress gene expression. In addition, there is evidence for other genetically uncharacterised proteins, including a CCAAT-binding complex, which interact with the 5 region of theamdS gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号