首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
pip92 is a cellular immediate-early gene inducible by serum growth factors in fibroblasts. It is also induced in the rat pheochromocytoma cell line PC12 by agents that cause proliferation, neuronal differentiation, and membrane depolarization. We show that the pip92-encoded polypeptide is a proline-rich protein of 221 amino acids, has an extremely short half-life, and is localized in the cytoplasm. We hypothesize that Pip92 plays a role in mediating the cellular responses to a variety of extracellular signals.  相似文献   

3.
We report here that immediate early gene pip92 is expressed during anisomycin-induced cell death in fibroblast NIH3T3 cells. To determine the mechanism by which this occurs and to identify downstream signaling pathways, we investigated the induction of the pip92 promoter. The activation of pip92 by anisomycin is mediated by the activation of MAP kinases, such as JNK and p38 kinase, but not ERK. Deletion analysis of the pip92 promoter indicated that pip92 activation occurs primarily within the region containing a serum response element (SRE). Further analysis of the SRE using a heterologous thymidine kinase promoter showed that both an Ets and CArG-like site are required for anisomycin-induced pip92 expression. Elk1, which binds to the Ets site, was phosphorylated by the JNK- and p38-dependent pathways and the phosphorylation of Elk1-GAL4 fusion proteins by these pathways was sufficient for the transactivation. Overall, this study suggested that different MAPK pathways are involved in the expression of immediate early gene pip92 by growth factors and environmental stresses.  相似文献   

4.
5.
6.
Ethylene perception by the ERS1 protein in Arabidopsis   总被引:13,自引:2,他引:11  
Ethylene perception in Arabidopsis is controlled by a family of five genes, including ETR1, ERS1 (ethylene response sensor 1), ERS2, ETR2, and EIN4. ERS1, the most highly conserved gene with ETR1, encodes a protein with 67% identity to ETR1. To clarify the role of ERS1 in ethylene sensing, we biochemically characterized the ERS1 protein by heterologous expression in yeast. ERS1, like ETR1, forms a membrane-associated, disulfide-linked dimer. In addition, yeast expressing the ERS1 protein contains ethylene-binding sites, indicating ERS1 is also an ethylene-binding protein. This finding supports previous genetic evidence that isoforms of ETR1 also function in plants as ethylene receptors. Further, we used the ethylene antagonist 1-methylcyclopropene (1-MCP) to characterize the ethylene-binding sites of ERS1 and ETR1. We found 1-MCP to be both a potent inhibitor of the ethylene-induced seedling triple response, as well as ethylene binding by yeast expressing ETR1 and ERS1. Yeast expressing ETR1 and ERS1 showed nearly identical sensitivity to 1-MCP, suggesting that the ethylene-binding sites of ETR1 and ERS1 have similar affinities for ethylene.  相似文献   

7.
《Autophagy》2013,9(9):1385-1386
Different from unicellular organisms, metazoan cells require the presence of extracellular growth factors to utilize environmental nutrients. However, the underlying mechanism was unclear. We have delineated a pathway, in which glycogen synthase kinase 3 (GSK3) in cells deprived of growth factors phosphorylates and activates the acetyltransferase KAT5/TIP60, which in turn stimulates the protein kinase ULK1 to elicit autophagy. Cells with the Kat5/Tip60 gene replaced with Kat5S86A that cannot be phosphorylated by GSK3 are resistant to serum starvation-induced autophagy. Acetylation sites on ULK1 were mapped to K162 and K606, and the acetylation-defective mutant ULK1K162,606R displays reduced kinase activity and fails to rescue autophagy in Ulk1?/? mouse embryonic fibroblasts, indicating that acetylation is vital to the activation of ULK1. The GSK3-KAT5-ULK1 cascade seems to be specific for cells to sense growth factors, as KAT5 phosphorylation is not enhanced under glucose deprivation. Distinct from the glucose starvation-autophagy pathway that is conserved in all eukaryotic organisms, the growth factor deprivation response pathway is perhaps unique to metazoan organisms.  相似文献   

8.
The study of the regulation of initiation of protein synthesis has recently gained momentum because of the established relationship between translation initiation, cell growth and tumorigenesis. Therefore much effort is devoted to the role of protein kinases which are activated in signal transduction cascades and which are responsible for the phosphorylation of a number of initiation factors. These specific factors are mainly involved in the binding of messenger RNA to the 40S ribosome, a process that makes the unwinding of the 5 untranslated region necessary. It appears that the phosphorylation of these factors increases their ability for cap recognition and helicase activity. The enhanced phosphorylation of the messenger binding factors results not only in an overall stimulation of translation, but especially weak messengers are positively discriminated. The above mechanisms mainly deal with qualitative control of translation, i.e., messenger selection, but phosphorylation also plays a role in quantitative regulation of protein synthesis. The generation of active eIF-2, the initiation factor that binds the Met-tRNA i and GTP, is dependent on a factor involved in the GDP-GTP exchange. Phosphorylation of eIF-2 results in sequestration of the exchange factor and a slowing down of the rate of initiation.Abbreviations eIF eukaryotic initiation factor - 5 UTR 5 untranslated region  相似文献   

9.
10.
cAMP/PKA signaling transientlystimulates mRNA expression of immediate-early genes, including IL-6 andc-fos. We confirmed that these mRNAs are transientlystimulated by parathyroid hormone (PTH) in ROS 17/2.8 osteoblasticcells. Consistent with the role for cAMP/PKA signaling in thisresponse, PTH induces transient cAMP elevation, PKA activation, andcAMP-responsive element-binding protein (CREB) phosphorylation. Ourgoal was to determine whether termination of immediate-early geneexpression is due to receptor desensitization or cAMP degradation. Theapproaches used were 1) inhibition of PTH receptordesensitization with G protein-coupled receptor kinase 2 (GRK2)antisense oligonucleotides or antisense plasmids, 2)sustained activation of adenyl cyclase with forskolin, and3) inhibition of cAMP degradation with3-isobutyl-1-methylxanthine. These experiments show that mechanismsdownstream of receptor desensitization and cAMP degradation areprimarily responsible for termination of PKA activity, CREBphosphorylation, and immediate-early gene expression. Similarconclusions were also obtained in response to PTH in a secondosteoblastic cell line (MC3T3-E1) and in response to isoproterenol inNIH3T3 fibroblasts. This conclusion may therefore reflect a generalmechanism for termination of immediate-early gene expression afterinduction by cAMP/PKA.

  相似文献   

11.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

12.
13.
14.
15.
16.
为探究葡萄CBF4基因的结构和表达特征,该研究以葡萄为材料,对葡萄 CBF4基因进行生物信息学及低温和硅酸钾响应分析。结果表明:(1)CBF4蛋白定位在细胞核,有5个磷酸化位点和14个糖基化位点,无信号肽,是一个亲水的、脂溶性较差的膜外蛋白。二级结构以无规则卷曲为主,比例为56.88%。该蛋白包含一个AP2/EREBP结构域。(2)CBF4蛋白的多序列和系统进化分析表明酿酒葡萄与美洲葡萄的同源性最高、亲缘关系最近。(3)荧光定量 PCR 分析显示,低温胁迫后CBF4基因在葡萄叶片中表达水平上调,说明CBF4基因可能参与了葡萄叶片低温胁迫的响应。低温条件下,施加硅酸钾CBF4基因表达具有差异性,说明该基因在不同的葡萄组织中对硅酸钾的响应机制可能不同。以上结果为进一步研究葡萄CBF4基因的功能和机理奠定了基础。  相似文献   

17.
18.
Growth factor-induced delayed early response genes.   总被引:38,自引:8,他引:30       下载免费PDF全文
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号