首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Primary sequence of 3′-terminal fragment of the mitochondrial 16S rRNA gene has been determined in 12 Drosophila species of the virilis group. The functionally important elements in secondary structure of the RNA product were defined. The region corresponding to the peptidyltransferase center has been localized. Variation of the 3′-terminal region of 16S rRNA gene has been described in 12 species of the virilis group. Phylogeny of the Drosophila virilis species group is discussed.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1049–1054.Original Russian Text Copyright © 2005 by Sorokina, Mugue, Andrianov, Mitrofanov.  相似文献   

2.
Most repeat units of rDNA in Drosophila virilis are interrupted in the 28S rRNA coding region by an intervening sequence about 10 kb in length; uninterrupted repeats have a length of about 11 kb. We have sequenced the coding/intervening sequence junctions and flanking regions in two independent clones of interrupted rDNA, and the corresponding 28S rRNA coding region in a clone of uninterrupted rDNA. The intervening sequence is terminated at both ends by a direct repeat of a fourteen nucleotide sequence that is present once in the corresponding region of an intact gene. This is a phenomenon associated with transposable elements in other eukaryotes and in prokaryotes, and the Drosophila rDNA intervening sequence is discussed in this context. We have compared more than 200 nucleotides of the D. virilis 28S rRNA gene with sequences of homologous regions of rDNA in Tetrahymena pigmentosa (Wild and Sommer, 1980) and Xenopus laevis (Gourse and Gerbi, 1980): There is 93% sequence homology among the diverse species, so that the rDNA region in question (about two-thirds of the way into the 28S rRNA coding sequence) has been very highly conserved in eukaryote evolution. The intervening sequence in T. pigmentosa is at a site 79 nucleotides upstream from the insertion site of the Drosophila intervening sequence.  相似文献   

3.
The no-on-transient A (nonA) gene encodes a putative RNA-binding protein, and mutations in this gene are known to affect vision, male courtship song and viability in Drosophila melanogaster. Here we have sequenced the coding region of the nonA gene of Drosophila littoralis and compared it with those of Drosophila virilis and D. melanogaster. All portions of nonA appeared to be conserved between D. littoralis and D. virilis, while the 5' region of the gene of these two species showed high divergence from that of a more distantly-related species, D. melanogaster. The same was true for the glycine repeat regions. No significant deviation from neutrality was observed in the analysis of intraspecific nucleotide variation in 5' or 3' region of the nonA gene in D. littoralis population. Also, comparison of D. littoralis sequences with homologous sequence of D. virilis suggests that the gene is evolving neutrally in D. virilis group. Divergence of the 5' regions between D. virilis group species and D. melanogaster could be a result of positive selection, but this finding is obscured by the long divergence time of the species groups.  相似文献   

4.
5.
The Ty3/gypsy family of retroelements is closely related to retroviruses, and some of their members have an open reading frame resembling the retroviral gene env. Sequences homologous to the gypsy element from Drosophila melanogaster are widely distributed among Drosophila species. In this work, we report a phylogenetic study based mainly on the analysis of the 5' region of the env gene from several species of the obscura group, and also from sequences already reported of D. melanogaster, Drosophila virilis, and Drosophila hydei. Our results indicate that the gypsy elements from species of the obscura group constitute a monophyletic group which has strongly diverged from the prototypic D. melanogaster gypsy element. Phylogenetic relationships between gypsy sequences from the obscura group are consistent with those of their hosts, indicating vertical transmission. However, D. hydei and D. virilis gypsy sequences are closely related to those of the affinis subgroup, which could be indicative of horizontal transmission.  相似文献   

6.
Restriction fragment length polymorphism (RFLP) analysis has been used to evaluate mitochondrial DNA (mtDNA) variation in 12 sibling species forming the Drosophila virilis species group. The variation thresholds corresponding to the interspecific and interstrain levels have been determined. The results indicate that interspecific hybridization has significantly contributed to the evolutionary history of the virilis species group.  相似文献   

7.
The Drosophila virilis group is one of the major lineages of Drosophila previously recognised and it has been used as a model for different types of studies. It comprises 13 species whose phylogenetic relationships are not well resolved. In the present study, six nuclear genes (Adh, fused, Gpdh, NonA, CG9631 and CG7219) and the mitochondrial ribosomal RNA genes (12S-16S) have been used to estimate the evolutionary tree of the group using different methods of phylogenetic reconstruction. Different competing evolutionary hypotheses have also been compared using the Approximately Unbiased test to further evaluate the robustness of the inferred trees. Results are, in general, consistent with previous studies in recovering the four major lineages of the group (D. virilis phylad, Drosophila montana subphylad, Drosophila kanekoi subphylad and Drosophila littoralis subphylad), although D. kanekoi, D. littoralis and Drosophila ezoana are here inferred to be more closely related to the D. virilis phylad than to the D. montana subphylad. The age of the crown group, estimated with a Bayesian method that assumes a relaxed molecular clock, is placed in the late Miocene (~ 10 Mya). The oldest lineages also appeared during this period (~ 7.5 to ~ 8.9 Mya), while the ages of the basal nodes of the montana subphylad and the virilis phylad are located in the early Pliocene (~ 4.9 and ~ 4.1 Mya). Major cladogenesis events correlate to geological and palaeoclimatic occurrences that most likely affected the freshwater and deciduous forests where these species are found. The inferred biogeographical history of the group, based on the statistical dispersal-vicariance analysis, indicates that the last common ancestor of the group had a Holarctic distribution from which the North American and the Eurasian lineages evolved as a result of a vicariant event.  相似文献   

8.
Drasl gene was mapped by in situ hybridization to polytene chromosomes of several sibling species of the Drosophila virilis group and hybrids between them. A 1037 bp fragment of the Drasl gene of the D. virilis genome was used as a probe. The gene sequence is localized to the region of the disk 25 A-B on the chromosome 2 of the polytene chromosome map of D. virilis.  相似文献   

9.
We have sequenced the available cloned examples of the intron-coding sequence junctions for the rDNA of the higher Dipteran, Calliphora erythrocephala. The introns interrupt the rDNA at the same position as the type 1 intron family detected in Drosophila melanogaster and D. virilis (10,11). A duplication of 14 base pairs of the 28S rRNA coding sequence surrounds a short version of the major genomic length class of introns. This same duplication is associated with boundaries of the type 1 introns in D. virilis and D. melanogaster (10, 13,14). We have detected considerable homology between the 3' intron sequences of C. erythrocephala and D. virilis. The rRNA coding sequences flanking the introns are extremely homologous in C. erythrocephala, D. melanogaster and D. virilis, with only one small region of significant divergence. This corresponds to a variable stem region previously identified in eukaryotic 28S rRNA at a site analogous to the L1 ribosomal protein binding site of prokaryotic 23S rRNA (27).  相似文献   

10.
S J Bray  J Hirsh 《The EMBO journal》1986,5(9):2305-2311
The dopa decarboxylase gene (Ddc) has been isolated from Drosophila virilis and introduced into the germ-line of Drosophila melanogaster by P-element mediated transformation. The integrated gene is induced at the correct stages during development with apparently normal tissue specificity, indicating that cis-acting elements required for regulation are functionally conserved between the two species. A comparison of the DNA sequences from the 5' flanking regions reveals a cluster of small (8-16 bp) conserved sequence elements within 150 bp upstream of the RNA startpoint, a region required for normal expression of the D. melanogaster Ddc gene.  相似文献   

11.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

12.
Wallau GL  Kaminski VL  Loreto EL 《Genetica》2011,139(11-12):1487-1497
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185?bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.  相似文献   

13.
14.
15.
We demonstrate using Drosophila, periodical cicadas, and hominid primates, that the molecular clock based on animal mitochondrial small- subunit (12S) rRNA genes ticks at significantly different relative rates depending on which taxa and which region of the gene are examined. Drosophila, which are commonly used as model taxa, are evolving in a highly peculiar manner with the majority of sites in the 3' half of the 12S gene apparently invariant. The analogous 3' half of the mitochondrial large-subunit rRNA gene (16S) appears to be similarly constrained. It is surprising that these regions that are already highly constrained in all animals should be even more constrained in Drosophila, especially when the Drosophila mitochondrial genome as a whole does not display a similar rate slowdown. This extreme 12S rate slowdown is not apparent in periodical cicadas or hominid primates and appears to be related to strong structural and functional constraints rather than a depressed mutation rate. Finally, the slow average rate of evolution in the third domain of Drosophila does not imply that the few variable sites lack multiple hits.   相似文献   

16.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

17.
Regardless of the well-documented virilis species group, most groups of the Drosophila virilis section have not been completely studied at molecular level since it was suggested. Therefore, phylogenetic relationships among and within species groups of the virilis section are generally unknown. In present paper, the complete mitochondrial ND2 gene and fragment of COI gene in combination with a nuclear gene, Adh coding region, were used to derive the most extensive molecular phylogeny to date for the Drosophila virilis section. A total of 111 individuals covering 61 species were sampled in this study. Novel phylogenetic findings included (1) support for the paraphyly of the melanica and robusta species group and at least two subgroups of the robusta species group, the lacertosa and okadai subgroups, were distinguished as paraphyletic taxa. In addition, (2) present results revealed the sister relationship between D. moriwakii and the robusta subgroup, conflicting with current taxonomy regarding D. moriwakii, which was shifted from the robusta species group to the melanica group. (3) In contrast to the robusta and melanica species groups, monophyly of the polychaeta species group, the angor group and the virilis group was confirmed, respectively. However, the monophyletic quadrisetata species group was resolved with uncertainty. (4) Our analyses of combined data set suggested close relationship between the quadrisetata species group and the unpublished clefta group, and the okadai subgroup is sister to the clade comprising of the quadrisetata and clefta species groups. Within the virilis section, D. fluvialis and three tropical species groups, the polychaeta group, the angor group and the repleta group, are found to branch off earlier than other ingroup taxa. This suggests that the virilis section might have originated in the Old World tropics. Besides, the derived status of the close affinities of the quadrisetata group, the clefta group, and the melanica and robusta groups is probably the result of their adaptation to forests between subtropical and cool-temperate climate. Based on the consideration of the phylogenetic placement of the species of the virilis section, we suggest that at least five independent migrations occurred from the Old World to the New World.  相似文献   

18.
Pterin-4alpha-carbinolamine dehydratase (PCD) is a key enzyme in the regeneration pathway of tetrahydrobiopterin. Previously, we isolated and reported the Drosophila melanogaster gene encoding PCD. In the present study, we isolated and characterized the Drosophila virilis gene encoding PCD. The Drosophila virilis PCD gene has two introns and an open reading frame to encode a protein of 101 amino acids. The amino acid sequence of Drosophila virilis PCD shows a 83% homology to that of the Drosophila melanogaster PCD protein. From the alignment of the nucleotide sequence in the 5'-flanking region of the Drosophila melanogaster and Drosophila virilis PCD genes, we found four conserved sequences. Using a transient transfection assay, we showed that one of the conserved sequences (-127 to approximately -115) is critical for expression, also the minimal promoter region between -127 and +51 is necessary for the efficient expression of Drosophila melanogaster PCD.  相似文献   

19.
Conservation of Brown Gene Trans-Inactivation in Drosophila   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

20.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号