首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
5.
6.
Whereas most T cells arise in the thymus, a distinct lineage of extrathymically derived T cells is present in the gut mucosa. The developmental origin of extrathymic T cells is poorly understood. We show here that Notch-1, a transmembrane receptor involved in T cell fate specification of bipotential T/B precursors in the thymus, is absolutely required for the development of extrathymic (as well as thymus-derived) mature T cells in the intestinal epithelium. In the absence of Notch-1, CD117(+) T cell precursors are relatively more abundant in the gut than the thymus, whereas immature B cells accumulate in the thymus but not the gut. Collectively, these data demonstrate that Notch-1 is essential for both thymic and extrathymic T cell fate specification and further suggest that bipotential T/B precursors that do not receive a Notch-1 signal adopt a B cell fate in the thymus but become developmentally arrested in the gut.  相似文献   

7.
Notch signalling is likely to regulate multiple aspects of lymphoid development and function. During T cell development, Notch signalling is required for commitment of the earliest progenitor, and may also function during other developmental stages. T cell commitment from a common lymphoid progenitor occurs at the expense of B cell development, suggesting that Notch signalling inhibits the earliest stage of B lymphopoiesis. In contrast, recent evidence suggests that Notch promotes the development of marginal zone lymphocytes. Not only is Notch required for later stages of B cell development, but several viral proteins appear to utilize Notch signalling in B cells to mediate their functions. In this review, we will focus on potential roles of Notch signalling in B lymphopoiesis and also consider how viral proteins may utilize Notch signalling in B cells.  相似文献   

8.
9.
T lymphocytes develop in the thymus from hemopoietic precursors that commit to the T cell lineage under the influence of Notch signals. In this study, we show by single cell analyses that the most immature hemopoietic precursors in the adult mouse thymus are uncommitted and specify to the T cell lineage only after their arrival in the thymus. These precursors express high levels of surface Notch receptors and rapidly lose B cell potential upon the provision of Notch signals. Using a novel culture system with complexed, soluble Notch ligands that allows the titration of T cell lineage commitment, we find that these precursors are highly sensitive to both Delta and Jagged ligands. In contrast, their phenotypical and functional counterparts in the bone marrow are resistant to Notch signals that efficiently induce T cell lineage commitment in thymic precursors. Mechanistically, this is not due to differences in receptor expression, because early T lineage precursors, bone marrow lineage marker-negative, Sca-1-positive, c-Kit-positive and common lymphoid progenitor cells, express comparable amounts of surface Notch receptors. Our data demonstrate that the sensitivity to Notch-mediated T lineage commitment is stage-dependent and argue against the bone marrow as the site of T cell lineage commitment.  相似文献   

10.
11.
12.
We investigated the developmental potential of hemopoietic progenitors in the aorta-gonad-mesonephros (AGM) region, where the definitive type hemopoietic progenitors have been shown to emerge before the fetal liver develops. By using an assay system that is able to determine the developmental potential of individual progenitors toward the T, B, and myeloid lineages, we show that not only multipotent progenitors but also progenitors committed to the T, B, or myeloid lineage already exist in this region of day 10 fetuses. Bipotent progenitors generating myeloid and T cells or those generating myeloid and B cells were also detected, suggesting that the commitment to T and B cell lineages is in progress in the AGM region. The numbers of these progenitors, however, were only 1/200-1/1000 of those in fetal liver of day 12 fetuses. Such small numbers of progenitors suggest that hemopoiesis has just started in the AGM region of day 10 fetuses. Although most of T cell lineage-committed progenitors in the AGM region generated only a small number of immature T cells, some were able to generate a large number of mature T cells. The detection of various types of lineage-committed progenitors strongly suggests that the AGM region is not only the site of stem cell emergence, but also the site of hemopoiesis, including lineage commitment. The T cell progenitors found in the AGM region may represent the first immigrants to the thymus anlage.  相似文献   

13.
Successful immunity depends upon the activity of multiple cell types. Commitment of pluripotent precursor cells to specific lineages, such as T or B cells, is obviously fundamental to this process. However, it is also becoming clear that continued differentiation and specialization of lymphoid cells is equally important for immune system integrity. Several members of the BTB-ZF family have emerged as critical factors that control development of specific lineages and also of specific effector subsets within these lineages. For example, BTB-ZF genes have been shown to control T cell versus B cell commitment and CD4 versus CD8 lineage commitment. Others, such as PLZF for NKT cells and Bcl-6 for T follicular helper cells, are necessary for the acquisition of effector functions. In this review, we summarize current findings concerning the BTB-ZF family members with a reported role in the immune system.  相似文献   

14.
Floral induction and determination: where is flowering controlled?   总被引:7,自引:0,他引:7  
Flowering is controlled by a variety of interrelated mechanisms. In many plants, the environment controls the production of a floral stimulus, which moves from the leaves to the shoot apex. Apices can become committed to the continuous production of flowers after the receipt of sufficient amounts of floral stimulus. However, in some plants, the commitment to continued flower production is evidently caused by a plant's commitment to perpetually produce floral stimulus in the leaves. Ultimately, the induction of flowering leads to the specification of flowers at the shoot apex. In Arabidopsis, floral specification and inflorescence patterning are regulated largely by the interactions between the genes TERMINAL FLOWER, LEAFY and APETALA1/CAULIFLOWER.  相似文献   

15.
The molecular mechanisms regulating lymphocyte lineage commitment remain poorly characterized. To explore the role of the IL7R in this process, we generated transgenic mice that express a constitutively active form of STAT5 (STAT5b-CA), a key downstream IL7R effector, throughout lymphocyte development. STAT5b-CA mice exhibit a 40-fold increase in pro-B cells in the thymus. As documented by BrdU labeling studies, this increase is not due to enhanced B cell proliferation. Thymic pro-B cells in STAT5b-CA mice show a modest increase in cell survival ( approximately 4-fold), which correlates with bcl-x(L) expression. However, bcl-x(L) transgenic mice do not show increases in thymic B cell numbers. Thus, STAT5-dependent bcl-x(L) up-regulation and enhanced B cell survival are not sufficient to drive the thymic B cell development observed in STAT5b-CA mice. Importantly, thymic pro-B cells in STAT5b-CA mice are derived from early T cell progenitors (ETPs), suggesting that STAT5 acts by altering ETP lineage commitment. Supporting this hypothesis, STAT5 binds to the pax5 promoter in ETPs from STAT5b-CA mice and induces pax5, a master regulator of B cell development. Conversely, STAT5b-CA mice exhibit a decrease in the DN1b subset of ETPs, demonstrating that STAT5 activation inhibits early T cell differentiation or lineage commitment. On the basis of these findings, we propose that the observed expression of the IL-7R on common lymphoid progenitors, but not ETPs, results in differential STAT5 signaling within these distinct progenitor populations and thus helps ensure appropriate development of B cells and T cells in the bone marrow and thymic environments, respectively.  相似文献   

16.
Similarities between T and B lymphocytes might have led to the idea that these functionally distinct cells develop from a common lymphoid progenitor. However, investigations with a new clonal assay which allows for T-, B- and myeloid-lineage development indicate that commitment to T-cell and B-cell lineages occurs instead through myeloid/T and myeloid/B bipotential stages, respectively. These findings provide an opportunity to reconsider the ontogeny and phylogeny of T- and B-cell development.  相似文献   

17.
18.
19.
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. We explored the underlying mechanism of BMP-2-induced chondrocyte commitment of C3H10T1/2 cells. Treating cells with exogenous BMP-2 was tied to chondrocyte commitment by inhibiting matrix metalloproteinase-9 activity (MMP-9: 92 kDa type IV collagenase/gelatinase B). Glycogen synthase kinase (GSK)-3β inhibition by its specific inhibitor blocked BMP-2-induced chondrocyte commitment by stimulating MMP-9 activity. These findings indicate that the downregulation of MMP-9 by BMP-2 is associated with chondrocyte commitment, and that the GSK-3β signaling pathway is involved in this process.  相似文献   

20.
Xin WANG  Bing YE 《生物学前沿》2012,7(4):292-296
Neurons are the basic units of connectivity in the nervous system.As a signature feature,neurons form polarized structures:dendrites and axons,which integrate either sensory stimuli or inputs from upst...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号