首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as “fold/limit cycle” type of bursting, then anti-phase continuous spiking, followed by the “fold/torus” type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate “fold/Hopf” bursting via “fold/fold” hysteresis loop; whereas, the chemically coupled cells generate “fold/subHopf” bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast–slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.  相似文献   

2.
It has been shown previously that identical spiking cells, incapable of bursting by themselves, may burst under weak diffusive coupling conditions. With stronger coupling, the coupled system reverts to bursting can be recovered by introducing heterogeneity in the model parameters. For a two-cell system, we explain the phenomenon with bifurcation analysis. For larger clusters of coupled cells, we demonstrate by numerical simulation that the phenomenon carries over. In addition, we use a perturbation analysis to deduce the dependence of the heterogeneity parameter used in the bifurcation analysis on the original heterogeneity parameters and the coupling strength. Implications of the phenomenon of emergent bursting are discussed in the context of electrical activity in pancreatic beta cells.  相似文献   

3.
Transitions between different behavioral states, such as sleep or wakefulness, quiescence or attentiveness, occur in part through transitions from action potential bursting to single spiking. Cortical activity, for example, is determined in large part by the spike output mode from the thalamus, which is controlled by the gating of low-voltage–activated calcium channels. In the subiculum—the major output of the hippocampus—transitions occur from bursting in the delta-frequency band to single spiking in the theta-frequency band. We show here that these transitions are influenced strongly by the inactivation kinetics of voltage-gated sodium channels. Prolonged inactivation of sodium channels is responsible for an activity-dependent switch from bursting to single spiking, constituting a novel mechanism through which network dynamics are controlled by ion channel gating.  相似文献   

4.
We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes riding on top of an elevated voltage plateau. Oscillations with these characteristics have been called “pseudo-plateau bursting”. Unlike standard bursting, the subsystem of fast variables does not possess a stable branch of periodic spiking solutions, and in the case studied here the standard fast/slow analysis provides little information about the underlying dynamics. We demonstrate that the bursting is actually a canard-induced mixed mode oscillation, and use canard theory to characterize the dynamics of the oscillation. We also use bifurcation analysis of the full system of equations to extend the results of the singular analysis to the physiological regime. This demonstrates that the combination of these two analysis techniques can be a powerful tool for understanding the pseudo-plateau bursting oscillations that arise in electrically excitable pituitary cells and isolated pancreatic β-cells.  相似文献   

5.
We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment.During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting.During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable.We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.  相似文献   

6.
Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. As the parameter of activation kinetics of a slow potassium current is shifted to more hyperpolarized values of the membrane potential, the model undergoes a sequence of incremental spike adding transitions accumulating towards a periodic tonic spiking activity. Within a narrow parameter window around every spike adding transition, spike alteration of bursting is deterministically chaotic due to homoclinic bifurcations of a saddle periodic orbit. We have found that near these transitions the interneuron model becomes extremely sensitive to small random perturbations that cause a wide expansion and overlapping of the chaotic windows. The chaotic behavior is characterized by positive values of the largest Lyapunov exponent, and of the Shannon entropy of probability distribution of spike numbers per burst. The windows of chaotic dynamics resemble the Arnold tongues being plotted in the parameter plane, where the noise intensity serves as a second control parameter. We determine the critical noise intensities above which the interneuron model generates only irregular bursting within the overlapped windows.  相似文献   

7.
Pancreatic beta-cells in an intact Islet of Langerhans exhibit bursting electrical behavior. The Chay-Keizer model describes this using a calcium-activated potassium (K-Ca) channel, but cannot account for the irregular spiking of isolated beta-cells. Atwater I., L. Rosario, and E. Rojas, Cell Calcium. 4:451-461, proposed that the K-Ca channels, which are rarely open, are shared by several cells. This suggests that the chaotic behavior of isolated cells is stochastic. We have revised the Chay-Keizer model to incorporate voltage clamp data of Rorsman and Trube and extended it to include stochastic K-Ca channels. This model can describe the behavior of single cells, as well as that of clusters of cells tightly coupled by gap junctions. As the size of the clusters is increased, the electrical activity shows a transition from chaotic spiking to regular bursting. Although the model of coupling is over-simplified, the simulations lend support to the hypothesis that bursting is the result of channel sharing.  相似文献   

8.
A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.  相似文献   

9.
Using two-cell and 50-cell networks of square-wave bursters, we studied how excitatory coupling of individual neurons affects the bursting output of the network. Our results show that the effects of synaptic excitation vs. electrical coupling are distinct. Increasing excitatory synaptic coupling generally increases burst duration. Electrical coupling also increases burst duration for low to moderate values, but at sufficiently strong values promotes a switch to highly synchronous bursts where further increases in electrical or synaptic coupling have a minimal effect on burst duration. These effects are largely mediated by spike synchrony, which is determined by the stability of the in-phase spiking solution during the burst. Even when both coupling mechanisms are strong, one form (in-phase or anti-phase) of spike synchrony will determine the burst dynamics, resulting in a sharp boundary in the space of the coupling parameters. This boundary exists in both two cell and network simulations. We use these results to interpret the effects of gap-junction blockers on the neuronal circuitry that underlies respiration.  相似文献   

10.
In the present paper, a simple spike timing distance is defined which can be used to measure the degree of synchronization with the information only encoded in the precise timing of the spike trains. Via calculating the spike timing distance defined in this paper, the spike train similarity of uncoupled Hindmarsh–Rose neurons in bursting or spiking states with different initial conditions is investigated and the results are compared with other spike train distance measures. Later, the spike timing distance measure is applied to study the synchronization of coupled or common noise-stimulated neurons. Counterintuitively, the addition of weak coupling or common noise doesn’t enhance the degree of synchronization although after critical values, both of them can induce complete synchronizations. More interestingly, the common noise plays opposite roles for weak and strong enough couplings. Finally, it should be noted that the measure defined in this paper can be extended to measure large neuronal ensembles and the lag synchronization.  相似文献   

11.
We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh–Rose neurons. For modeling complex synaptic connectivity, we consider the Watts–Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the JD plane (J: synaptic inhibition strength and D: noise intensity). As the rewiring probability p is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the JD plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.  相似文献   

12.
Electrical activity plays a pivotal role in glucose-stimulated insulin secretion from pancreatic -cells. Recent findings have shown that the electrophysiological characteristics of human -cells differ from their rodent counterparts. We show that the electrophysiological responses in human -cells to a range of ion channels antagonists are heterogeneous. In some cells, inhibition of small-conductance potassium currents has no effect on action potential firing, while it increases the firing frequency dramatically in other cells. Sodium channel block can sometimes reduce action potential amplitude, sometimes abolish electrical activity, and in some cells even change spiking electrical activity to rapid bursting. We show that, in contrast to L-type -channels, P/Q-type -currents are not necessary for action potential generation, and, surprisingly, a P/Q-type -channel antagonist even accelerates action potential firing. By including SK-channels and dynamics in a previous mathematical model of electrical activity in human -cells, we investigate the heterogeneous and nonintuitive electrophysiological responses to ion channel antagonists, and use our findings to obtain insight in previously published insulin secretion measurements. Using our model we also study paracrine signals, and simulate slow oscillations by adding a glycolytic oscillatory component to the electrophysiological model. The heterogenous electrophysiological responses in human -cells must be taken into account for a deeper understanding of the mechanisms underlying insulin secretion in health and disease, and as shown here, the interdisciplinary combination of experiments and modeling increases our understanding of human -cell physiology.  相似文献   

13.
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks.  相似文献   

14.
Pedersen MG 《Biophysical journal》2010,99(10):3200-3207
Electrical activity in pancreatic β-cells plays a pivotal role in glucose-stimulated insulin secretion by coupling metabolism to calcium-triggered exocytosis. Mathematical models based on rodent data have helped in understanding the mechanisms underlying the electrophysiological patterns observed in laboratory animals. However, human β-cells differ in several aspects, and in particular in their electrophysiological characteristics, from rodent β-cells. Hence, from a clinical perspective and to obtain insight into the defects in insulin secretion relevant for diabetes mellitus, it is important to study human β-cells. This work presents the first mathematical model of electrical activity based entirely on published ion channel characteristics of human β-cells. The model reproduces satisfactorily a series of experimentally observed patterns in human β-cells, such as spiking and rapid bursting electrical activity, and their response to a range of ion channel antagonists. The possibility of Human Ether-a-Go-Go-related- and leak channels as drug targets for diabetes treatment is discussed based on model results.  相似文献   

15.
Stable signal transmission is crucial for information processing by the brain. Synfire-chains, defined as feed-forward networks of spiking neurons, are a well-studied class of circuit structure that can propagate a packet of single spikes while maintaining a fixed packet profile. Here, we studied the stable propagation of spike bursts, rather than single spike activities, in a feed-forward network of a general class of excitable bursting neurons. In contrast to single spikes, bursts can propagate stably without converging to any fixed profiles. Spike timings of bursts continue to change cyclically or irregularly during propagation depending on intrinsic properties of the neurons and the coupling strength of the network. To find the conditions under which bursts lose fixed profiles, we propose an analysis based on timing shifts of burst spikes similar to the phase response analysis of limit-cycle oscillators.  相似文献   

16.
I seek to explain phenomena observed in simulations of populations of gap junction-coupled bursting cells by studying the dynamics of identical pairs. I use a simplified model for pancreatic β-cells and decompose the system into fast (spike-generating) and slow subsystems to show how bifurcations of the fast subsystem affect bursting behavior. When coupling is weak, the spikes are not in phase but rather are anti-phase, asymmetric or quasi-periodic. These solutions all support bursting with smaller amplitude spikes than the in-phase case, leading to increased burst period. A key geometrical feature underlying this is that the in-phase periodic solution branch terminates in a homoclinic orbit. The same mechanism also provides a model for bursting as an emergent property of populations; cells which are not intrinsic bursters can burst when coupled. This phenomenon is enhanced when symmetry is broken by making the cells differ in a parameter.  相似文献   

17.
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). We developed a set of map-based models that replicate spiking activity of cortical fast spiking, regular spiking and intrinsically bursting neurons. Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. Our study suggests that map-based models can be widely used for large-scale simulations and that such models are especially useful for tasks where the modeling of specific firing patterns of different cell classes is important.  相似文献   

18.
Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic β-cells, which in isolation are known to exhibit irregular spiking (Sherman and Rinzel, Biophys J 54:411–425, 1988; Sherman and Rinzel, Biophys J 59:547–559, 1991). At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, building on an earlier analysis of denoising in networks of integrate-and-fire neurons (Medvedev, Neural Comput 21 (11):3057–3078, 2009) and our recent study of spontaneous activity in a closely related model of the Locus Coeruleus network (Medvedev and Zhuravytska, The geometry of spontaneous spiking in neuronal networks, submitted, 2012), we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity (Fiedler, Czech Math J 23(98):298–305, 1973) or small total effective resistance (Bollobas, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer, New York, 1998) are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models.  相似文献   

19.
Nittala A  Ghosh S  Wang X 《PloS one》2007,2(10):e983
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b), the synchronization index lambda of the bursting beta cells, the bursting period T(b), the plateau fraction p(f), and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta), number of inter-beta cell couplings of each beta cell n(c), and the coupling strength g(c). We found that at low values of n(beta), n(c) and g(c), the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta) approximately 100, n(c) approximately 6 and g(c) approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta)> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions.  相似文献   

20.
Pancreatic β-cells secrete insulin in response to closure of ATP-sensitive K+ (KATP) channels, which causes membrane depolarization and a concomitant rise in intracellular Ca2+ (Cai). In intact islets, β-cells are coupled by gap junctions, which are proposed to synchronize electrical activity and Cai oscillations after exposure to stimulatory glucose (>7 mM). To determine the significance of this coupling in regulating insulin secretion, we examined islets and β-cells from transgenic mice that express zero functional KATP channels in approximately 70% of their β-cells, but normal KATP channel density in the remainder. We found that KATP channel activity from approximately 30% of the β-cells is sufficient to maintain strong glucose dependence of metabolism, Cai, membrane potential, and insulin secretion from intact islets, but that glucose dependence is lost in isolated transgenic cells. Further, inhibition of gap junctions caused loss of glucose sensitivity specifically in transgenic islets. These data demonstrate a critical role of gap junctional coupling of KATP channel activity in control of membrane potential across the islet. Control via coupling lessens the effects of cell–cell variation and provides resistance to defects in excitability that would otherwise lead to a profound diabetic state, such as occurs in persistent neonatal diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号