首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some plant microRNAs have been shown to be de novo generated by inverted duplication from their target genes. Subsequent duplication events potentially generate multigene microRNA families. Within this article we provide supportive evidence for the inverted duplication model of plant microRNA evolution. First, we report that the precursors of four Arabidopsis thaliana microRNA families, miR157, miR158, miR405 and miR447 share nearly identical nucleotide sequences throughout the whole miRNA precursor between the family members. The extent and degree of sequence conservation is suggestive of recent evolutionary duplication events. Furthermore we found that sequence similarities are not restricted to the transcribed part but extend into the promoter regions. Thus the duplication event most probably included the promoter regions as well. Conserved elements in upstream regions of miR163 and its targets were also detected. This implies that the inverted duplication of target genes, at least in certain cases, had included the promoters of the target genes. Sequence conservation within promoters of miRNA families as well as between miRNA and its potential progenitor gene can be exploited for understanding the regulation of microRNA genes.  相似文献   

2.
Chromosome I Duplications in Caenorhabditis Elegans   总被引:8,自引:7,他引:1       下载免费PDF全文
K. S. McKim  A. M. Rose 《Genetics》1990,124(1):115-132
We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.  相似文献   

3.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

4.
Tandem duplications of gene-encoding regions occur in the mitochondrial DNA (mt DNA) of some individuals belonging to several species of whiptail lizards (genus Cnemidophorus). All or part of the duplicated regions of the mtDNAs from five different species were sequenced. In all, the duplication endpoints were within or immediately adjacent to sequences in tRNA, rRNA or protein genes that are capable of forming energetically stable stem-and-loop structures. In two of these mtDNAs, the duplication endpoints were also associated with a direct sequence repeat of 13 bp. The consistent association of stem-and-loop structures with duplication endpoints suggests that these structures may play a role in the duplication process. These data, combined with the absence of direct or palindromic repeats at three of the pairs of duplication endpoints, also suggest the existence of a mechanism for generating de novo duplications that is qualitatively different from those previously modeled.  相似文献   

5.
6.
7.
The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic independent short-segment duplications. The gross duplication might coincide with the origin of the ability to grow under anaerobic conditions.  相似文献   

8.
R K Herman  C K Kari 《Cell》1985,40(3):509-514
We have generated C. elegans animals that carry a duplication as a free chromosome fragment bearing an ace-1+ gene in an otherwise homozygous ace-1 ace-2 genetic background. The single ace-1+ gene in these animals is responsible for coordinated animal movement and acetylcholinesterase activity in the regions of the nerve ring and ventral and dorsal nerve cords, as judged by histochemical assay. We have used other genes on the free duplication whose cell-specific expressions have already been elucidated to identify particular genetic mosaics produced by spontaneous somatic loss of the duplication. The analysis of these mosaics has led us to conclude that the synthesis of acetylcholinesterase by muscle cells is primarily responsible for the coordinated movement conferred by the ace-1+ gene.  相似文献   

9.
A de novo 11p+ chromosome was found in a child with mild mental retardation but no other remarkable dysmorphic characteristics. Banding studies suggested a duplication of regions 11p13 and 11p14 or regions 11p14 and 11p15. Using fluorescent in situ hybridization and digital imaging microscopy, we mapped probe p32.1 (D11S16) to the proximal part of region 11p14 (11p14.1) and demonstrated duplication of this probe in our patient. Southern hybridization showed duplication of p32.1 and other probes located at 11p13 and 11p14, but the gene for alpha calcitonin (CALCA), located at 11p15, was not duplicated. The application of these techniques led to the identification of the duplication as dir dup(11)(pter----p13::p15.1----qter).  相似文献   

10.
We analyzed the conservation of large paralogous regions (more than 200 kb) on human chromosome regions 21q22.1 and 21q11.2 and on pericentromeric regions of chromosomes 2, 13, and 18 in three nonhuman primate species. Orthologous regions were found by FISH analysis of metaphase chromosomes from Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. Only one orthologous region was detected in chromosomes of P. pygmaeus, showing that the original locus was at 21q22.1 and that the duplication arose after the separation of Asian orangutans from the other hominoids. Surprisingly, the paralogous regions were more highly conserved in gorilla than in chimpanzee. PCR amplification of STSs derived from sequences of the chromosome 21 loci and low-stringency FISH analysis showed that this duplication occurred recently in the evolution of the genome. Different rates of sequence evolution through substitutions or deletions, after the duplication, may have resulted in diversity between closely related primates.  相似文献   

11.
J Wu  N Kurata  H Tanoue  T Shimokawa  Y Umehara  M Yano  T Sasaki 《Genetics》1998,150(4):1595-1603
Two genomic regions duplicated in distal ends of the short arms of chromosomes 11 and 12 in rice (Oryza sativa L.) were characterized by YAC ordering with 46 genetic markers. Physical maps covering most of the duplicated regions were generated. Thirty-five markers, including 21 rice cDNA clones, showed the duplicated loci arrayed strictly in the same order along the two specific genomic regions. Regardless of their different genetic distances, the two duplicated segments may have a similar and minimum physical size with an expected length of about 2.5 Mb. However, differences of RFLP frequency for the duplicated DNA copies and recombination frequency for a given homoeologous area between the two regions were observed, indicating that these changes in genome organization occurred after the duplication. Our results establish a good model system for resolving the relationships between gene duplication, expression of duplicated genes, and the frequency of meiotic recombination in small chromosomal regions.  相似文献   

12.
In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, we have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. We have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals.  相似文献   

13.
Despite considerable advances in sequencing of the human genome over the past few years, the organization and evolution of human pericentromeric regions have been difficult to resolve. This is due, in part, to the presence of large, complex blocks of duplicated genomic sequence at the boundary between centromeric satellite and unique euchromatic DNA. Here, we report the identification and characterization of an approximately 49-kb repeat sequence that exists in more than 40 copies within the human genome. This repeat is specific to highly duplicated pericentromeric regions with multiple copies distributed in an interspersed fashion among a subset of human chromosomes. Using this interspersed repeat (termed PIR4) as a marker of pericentromeric DNA, we recovered and sequence-tagged 3 Mb of pericentromeric DNA from a variety of human chromosomes as well as nonhuman primate genomes. A global evolutionary reconstruction of the dispersal of PIR4 sequence and analysis of flanking sequence supports a model in which pericentromeric duplications initiated before the separation of the great ape species (>12 MYA). Further, analyses of this duplication and associated flanking duplications narrow the major burst of pericentromeric duplication activity to a time just before the divergence of the African great ape and human species (5 to 7 MYA). These recent duplication exchange events substantially restructured the pericentromeric regions of hominoid chromosomes and created an architecture where large blocks of sequence are shared among nonhomologous chromosomes. This report provides the first global view of the series of historical events that have reshaped human pericentromeric regions over recent evolutionary time.  相似文献   

14.
G. Pesole  A. Gerardi  F. di-Jeso    C. Saccone 《Genetics》1994,136(1):255-260
Apo(a) is a low density lipoprotein homologous to plasminogen and has been shown to be involved in coronary atheroschlerosis. In the present paper we will try to analyze the interesting evolutionary pattern of Apo(a). The plasminogen gene contains 5 cysteine-rich sequences, called kringles, followed by a protease domain. Apo(a), probably arisen by duplication of an ancestral plasminogen gene, contains many tandemly repeated copies of a sequence domain similar to the fourth kringle of plasminogen, 37 in human and at least 10 in the partially sequenced gene of rhesus, and the protease domain. We have found that the upstream kringles of apo(a) undergo Molecular Drive-like processes that produce high intraspecies similarity, whereas the downstream kringles evolve in a molecular clock-like manner and show an high interspecies sequence similarity. The latter regions are obviously suitable for dating the duplication event by which Apo(a) arose from plasminogen, but only if they evolve at the same rate in the two genes. Thus, we propose a ``Molecular Clock Test' for assessing whether the comparison of two paralogous genes (or gene regions) can give reliable information on the dating of their origin by duplication. Applying this test to the kringle-4 domain of apo(a) and plasminogen gene, we demonstrate that the separation between the two genes by duplication dates back at about 90 Mya immediately before the radiation of mammals.  相似文献   

15.

Backround

Down syndrome (DS) is the most common aneuploidy in live-born individuals and it is well recognized with various phenotypic expressions. Although an extra chromosome 21 is the genetic cause for DS, specific phenotypic features may result from the duplication of smaller regions of the chromosome and more studies need to define genotypic and phenotypic correlations.

Case report

We report on a 26 year old male with partial trisomy 21 presenting mild clinical symptoms relative to DS including borderline intellectual disability. In particular, the face and the presence of hypotonia and keratoconus were suggestive for the DS although the condition remained unnoticed until his adult age array comparative genomic hybridization (aCGH) revealed a 10.1 Mb duplication in 21q22.13q22.3 and a small deletion of 2.2 Mb on chromosomal band 7q36 arising from a paternal translocation t(7;21). The 21q duplication encompasses the gene DYRK1.

Conclusion

Our data support the evidence of specific regions on distal 21q whose duplication results in phenotypes recalling the typical DS face. Although the duplication region contains DYRK1, which has previously been implicated in the causation of DS, our patient has a borderline IQ confirming that their duplication is not sufficient to cause the full DS phenotype.  相似文献   

16.
Gene evolution has long been thought to be primarily driven by duplication and rearrangement mechanisms. However, every evolutionary lineage harbours orphan genes that lack homologues in other lineages and whose evolutionary origin is only poorly understood. Orphan genes might arise from duplication and rearrangement processes followed by fast divergence; however, de novo evolution out of non-coding genomic regions is emerging as an important additional mechanism. This process appears to provide raw material continuously for the evolution of new gene functions, which can become relevant for lineage-specific adaptations.  相似文献   

17.
We have studied the meiotic recombination behavior of strains carrying two types of duplications of an 18.6-kilobase HIS4 Bam HI fragment. The first type is a direct duplication of the HIS4 Bam HI fragment in which the repeated sequences are separated by Escherichia coli plasmid sequences. The second type, a tandem duplication, has no sequences intervening between the repeated yeast DNA. The HIS4 genes in each region were marked genetically so that recombination events between the duplicated segments could be identified. Meiotic progeny of the strains carrying the duplication were analyzed genetically and biochemically to determine the types of recombination events that had occurred. Analysis of the direct vs. tandem duplication suggests that the E. coli plasmid sequences are recombinogenic in yeast when homozygous. In both types of duplications recombination between the duplicated HIS4 regions occurs at high frequency and involves predominantly interchromosomal reciprocal exchanges (equal and unequal crossovers). The striking observation is that intrachromosomal reciprocal recombination is very rare in comparison with interchromosomal reciprocal recombination. However, intrachromosomal gene conversion occurs at about the same frequency as interchromosomal gene conversion. Reciprocal recombination events between regions on the same chromatid are the most infrequent exchanges. These data suggest that intrachromosomal reciprocal exchanges are suppressed.  相似文献   

18.
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency that is caused by a functional defect of the NADPH oxidase of phagocytes, and that leads to severe recurrent infections. CGD results from the absence or the dysfunction of various components of NADPH oxidase, and autosomal recessive CGD with the lack of p67-phox (A67 CGD) is the rarest form of the disease. Identifying familiar mutations in subjects with A67 CGD provides the most reliable method of detecting carriers and is the basis for prenatal diagnosis. In the present study, we report the detailed characterization of the first duplication in the p67-phox gene identified in a 30-year-old patient affected by systemic aspergillosis attributable to p67-phox deficiency. We show that this new mutation involving exons 9 and 10 is the result of a tandem duplication of approximately 1.1 kb, which resulted from the juxtaposition of intron 8 to intron 10. We have sequenced both the junction fragment of this duplication and the corresponding wild-type regions and have found that the breakpoint regions in intron 8 and in intron 10 show limited homology. Our result suggests that this interchange arose as an illegitimate recombination event. As in other non-homologous rearrangements previously reported, the duplication breakpoints are located within the sequence motif 5'-CCAG-3' and its complement 5'-CTGG-3'.  相似文献   

19.
We describe the characterization of an interstitial duplication of 12p, dup(12)(p11.21p13.31), by array-CGH and FISH in a patient with mental retardation and dysmorphic features. The sequence analysis of the breakpoints revealed the presence of homologous low copy repeats (LCRs) flanking the duplication region, thus suggesting that they have mediated the rearrangement. Pip-maker analysis showed that a third cluster of homologous LCRs lie distally to the two mediating the 12p duplication. We hypothesize that this duplication might be a new recurrent rearrangement and that, thanks to the different orientations of the homologous regions lying within each cluster, the three clusters are responsible for at least some of the several 12p aneuploidies reported in the literature such as direct and inverted duplications, deletions and supernumerary analphoid chromosomes. Moreover, we excluded that polymorphic inversions between these three clusters are present in the normal population.Manuela De Gregori, Tiziano Pramparo contributed equally to this paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号