共查询到20条相似文献,搜索用时 0 毫秒
1.
The fatty aldehyde dehydrogenase (Vh-ALDH) isolated from the luminescent bacterium, Vibrio harveyi, differs from other aldehyde dehydrogenases in its high affinity for NADP(+). The binding of NADP(+) appears to arise from the interaction of the 2'-phosphate of the adenosine moiety of NADP(+) with a threonine (T175) in the nucleotide recognition site just after the beta(B) strand as well as with an arginine (R210) that pi stacks over the adenosine moiety. The active site of Vh-ALDH contains the usual suspects of a cysteine (C289), two glutamates (E253 and E377) and an asparagine (N147) involved in the aldehyde dehydrogenase mechanism. However, Vh-ALDH has one polar residue in the active site that distinguishes it from other ALDHs; a histidine (H450) is in close contact with the cysteine nucleophile. As a glutamate has been implicated in promoting the nucleophilicity of the active site cysteine residue in ALDHs, the close contact of a histidine with the cysteine nucleophile in Vh-ALDH raises the possibility of alternate routes to increase the reactivity of the cysteine nucleophile. The effects of mutation of these residues on the different functions catalyzed by Vh-ALDH including acylation, (thio)esterase, reductase and dehydrogenase activities should help define the specific roles of the residues in the active site of ALDHs. 相似文献
2.
The fatty aldehyde dehydrogenase (Vh-ALDH) isolated from the luminescent bacterium, Vibrio harveyi, differs from other aldehyde dehydrogenases in its high affinity for NADP+. The binding of NADP+ appears to arise from the interaction of the 2′-phosphate of the adenosine moiety of NADP+ with a threonine (T175) in the nucleotide recognition site just after the βB strand as well as with an arginine (R210) that pi stacks over the adenosine moiety. The active site of Vh-ALDH contains the usual suspects of a cysteine (C289), two glutamates (E253 and E377) and an asparagine (N147) involved in the aldehyde dehydrogenase mechanism. However, Vh-ALDH has one polar residue in the active site that distinguishes it from other ALDHs; a histidine (H450) is in close contact with the cysteine nucleophile. As a glutamate has been implicated in promoting the nucleophilicity of the active site cysteine residue in ALDHs, the close contact of a histidine with the cysteine nucleophile in Vh-ALDH raises the possibility of alternate routes to increase the reactivity of the cysteine nucleophile. The effects of mutation of these residues on the different functions catalyzed by Vh-ALDH including acylation, (thio)esterase, reductase and dehydrogenase activities should help define the specific roles of the residues in the active site of ALDHs. 相似文献
3.
N. Croteau M. Vedadi M. Delarge E. Meighen M. Abu-Abed P. L. Howell A. Vrielink 《Protein science : a publication of the Protein Society》1996,5(10):2130-2132
Aldehyde dehydrogenase from Vibrio harveyi catalyzes the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique among the family of aldehyde dehydrogenases in that it exhibits much higher specificity for the cofactor NADP+ than for NAD+. The sequence of this form of the enzyme varies significantly from the NAD+ dependent forms, suggesting differences in the three-dimensional structure that may be correlated to cofactor specificity. Crystals of the enzyme have been grown both in the presence and absence of NADP+ using the hanging drop vapor diffusion technique. In order to improve crystal size and quality, iterative seeding techniques were employed. The crystals belong to space group P2(1), with unit cell dimensions a = 79.4 A, b = 131.1 A, c = 92.2 A, and beta = 92.4 degrees. Freezing the crystal to 100 K has enabled a complete set of data to be collected using a rotating anode source (lambda = 1.5418 A). The crystals diffract to a minimum d-spacing of 2.6 A resolution. Based on density calculations, two homodimers of molecular weight 110 kDa are estimated to be present in the asymmetric unit. Self-rotation functions show the presence of 3 noncrystallographic twofold symmetry axes. 相似文献
4.
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH. 相似文献
5.
Vijayakumar Boggaram Bengt Mannervik 《Biochemical and biophysical research communications》1978,83(2):558-564
Glutathione reductase from human erythrocytes was inactivated by ethoxyformic anhydride, and > 95% activity was lost by modification of about 1–1.5 histidine residues per flavin (or subunit), as measured by the increased absorbance at 240 nm. Full reactivation was obtained with hydroxylamine. The rate of inactivation increased with pH and an apparent pK = 5.9 was obtained for the protolytic dissociation. The modified enzyme was inactive with NADPH and GSSG as substrates, but almost fully active in catalysis of a transhydrogenase reaction involving pyridine nucleotides. The visible absorption spectrum of oxidized or two-electron-reduced enzyme was not changed, but the flavin fluorescence of oxidized enzyme increased 2-fold after the modification. NADPH or NADP+ did not protect the enzyme against inactivation. It is concluded that the modification affects a histidine involved in the second half-reaction of the catalysis, i.e. reduction of GSSG by the dithiol of reduced enzyme. Glutathione reductase from three additional mammalian sources was similarly inactivated, but enzyme from yeast was much less inactivated by the corresponding treatment with ethoxyformic anhydride. 相似文献
6.
Songsiriritthigul C Pantoom S Aguda AH Robinson RC Suginta W 《Journal of structural biology》2008,162(3):491-499
This research describes four X-ray structures of Vibrio harveyi chitinase A and its catalytically inactive mutant (E315M) in the presence and absence of substrates. The overall structure of chitinase A is that of a typical family-18 glycosyl hydrolase comprising three distinct domains: (i) the amino-terminal chitin-binding domain; (ii) the main catalytic (α/β)8 TIM-barrel domain; and (iii) the small (α + β) insertion domain. The catalytic cleft of chitinase A has a long, deep groove, which contains six chitooligosaccharide ring-binding subsites (−4)(−3)(−2)(−1)(+1)(+2). The binding cleft of the ligand-free E315M is partially blocked by the C-terminal (His)6-tag. Structures of E315M-chitooligosaccharide complexes display a linear conformation of pentaNAG, but a bent conformation of hexaNAG. Analysis of the final 2Fo − Fc omit map of E315M-NAG6 reveals the existence of the linear conformation of the hexaNAG at a lower occupancy with respect to the bent conformation. These crystallographic data provide evidence that the interacting sugars undergo conformational changes prior to hydrolysis by the wild-type enzyme. 相似文献
7.
Cobessi D Tête-Favier F Marchal S Branlant G Aubry A 《Journal of molecular biology》2000,300(1):141-152
The NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (abbreviated Sm-ALDH) belongs to the aldehyde dehydrogenase (ALDH) family. Its catalytic mechanism proceeds via two steps, acylation and deacylation. Its high catalytic efficiency at neutral pH implies prerequisites relative to the chemical mechanism. First, the catalytic Cys284 should be accessible and in a thiolate form at physiological pH to attack efficiently the aldehydic group of the glyceraldehyde-3-phosphate (G3P). Second, the hydride transfer from the hemithioacetal intermediate toward the nicotinamide ring of NADP should be efficient. Third, the nucleophilic character of the water molecule involved in the deacylation should be strongly increased. Moreover, the different complexes formed during the catalytic process should be stabilised.The crystal structures presented here (an apoenzyme named Apo2 with two sulphate ions bound to the catalytic site, the C284S mutant holoenzyme and the ternary complex composed of the C284S holoenzyme and G3P) together with biochemical results and previously published apo and holo crystal structures (named Apo1 and Holo1, respectively) contribute to the understanding of the ALDH catalytic mechanism.Comparison of Apo1 and Holo1 crystal structures shows a Cys284 side-chain rotation of 110 degrees, upon cofactor binding, which is probably responsible for its pK(a) decrease. In the Apo2 structure, an oxygen atom of a sulphate anion interacts by hydrogen bonds with the NH2 group of a conserved asparagine residue (Asn154 in Sm-ALDH) and the Cys284 NH group. In the ternary complex, the oxygen atom of the aldehydic carbonyl group of the substrate interacts with the Ser284 NH group and the Asn154 NH2 group. A substrate isotope effect on acylation is observed for both the wild-type and the N154A and N154T mutants. The rate of the acylation step strongly decreases for the mutants and becomes limiting. All these results suggest the involvement of Asn154 in an oxyanion hole in order to stabilise the tetrahedral intermediate and likely the other intermediates of the reaction. In the ternary complex, the cofactor conformation is shifted in comparison with its conformation in the C284S holoenzyme structure, likely resulting from its peculiar binding mode to the Rossmann fold (i.e. non-perpendicular to the plane of the beta-sheet). This change is likely favoured by a characteristic loop of the Rossmann fold, longer in ALDHs than in other dehydrogenases, whose orientation could be constrained by a conserved proline residue. In the ternary and C284S holenzyme structures, as well as in the Apo2 structure, the Glu250 side-chain is situated less than 4 A from Cys284 or Ser284 instead of 7 A in the crystal structure of the wild-type holoenzyme. It is now positioned in a hydrophobic environment. This supports the pK(a) assignment of 7.6 to Glu250 as recently proposed from enzymatic studies. 相似文献
8.
Markus Buchhaupt Jan Guder Fenja Sporleder Melanie Paetzold Jens Schrader 《World journal of microbiology & biotechnology》2013,29(3):569-575
Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H2O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)+ regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. 相似文献
9.
10.
A structural basis for the mechanism of aspartate-beta-semialdehyde dehydrogenase from Vibrio cholerae 下载免费PDF全文
Blanco J Moore RA Kabaleeswaran V Viola RE 《Protein science : a publication of the Protein Society》2003,12(1):27-33
L-Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes the reductive dephosphorylation of beta-aspartyl phosphate to L-aspartate-beta-semialdehyde in the aspartate biosynthetic pathway of plants and micro-organisms. The aspartate pathway produces fully one-quarter of the naturally occurring amino acids, but is not found in humans or other eukaryotic organisms, making ASADH an attractive target for the development of new antibacterial, fungicidal, or herbicidal compounds. We have determined the structure of ASADH from Vibrio cholerae in two states; the apoenzyme and a complex with NADP, and a covalently bound active site inhibitor, S-methyl-L-cysteine sulfoxide. Upon binding the inhibitor undergoes an enzyme-catalyzed reductive demethylation leading to a covalently bound cysteine that is observed in the complex structure. The enzyme is a functional homodimer, with extensive intersubunit contacts and a symmetrical 4-amino acid bridge linking the active site residues in adjacent subunits that could serve as a communication channel. The active site is essentially preformed, with minimal differences in active site conformation in the apoenzyme relative to the ternary inhibitor complex. The conformational changes that do occur result primarily from NADP binding, and are localized to the repositioning of two surface loops located on the rim at opposite sides of the NADP cleft. 相似文献
11.
12.
Heat-stable malate dehydrogenase isolated from Thermus flavus AT62 was completely inactivated by treatment with diethylpyrocarbonate. The inactivation was accompanied by the loss of 1.2 histidine residues per subunit of the enzyme. The enzyme was protected from inactivation by NADH. The enzyme was also inactivated by dye-sensitized photooxidation. Methionine residues, in addition to histidine residues, were destroyed in the inactivated enzyme. Kinetic analyses of the inactivation indicated that the pK value of the residue involved in the inactivation was 8.20 at 25.0 degrees C and 7.52 at 60.0 degrees C. From the pK values and the heat of ionization calculated from the van't Hoff plot of pKs, a histidine residue was identified to be primarily involved in the inactivation. The effect of temperature on the pK value of the essential group in this enzyme from a thermophilic organism is discussed. 相似文献
13.
Differential regulation of enzyme activities involved in aldehyde metabolism in the luminescent bacterium Vibrio harveyi. 总被引:3,自引:2,他引:1 下载免费PDF全文
The effects of catabolite repression and nutrient abundance on the activities of Vibrio harveyi enzymes known to be related to aldehyde metabolism were investigated. The growth of cells in complex medium containing glucose, which decreases in vivo luminescence and luciferase synthesis, also resulted in decreases in the specific activities of V. harveyi aldehyde dehydrogenase and acyl carrier protein acyltransferase as well as in the degree of fatty acylation of three bioluminescence-specific polypeptides (32, 42, and 57 kilodaltons), as monitored by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This repression was partially alleviated in glucose medium containing cyclic AMP. The acylation of the above-mentioned proteins, in addition to light emission and luciferase and acyltransferase activities, was also repressed when cells were grown in minimal medium, with partial recovery of these functions upon the addition of arginine. In contrast, aldehyde dehydrogenase activity was increased in minimal medium. These results suggest that the 42-, 57-, and 32-kilodalton proteins, which are responsible for the supply and reduction of fatty acids to form aldehydes for the luciferase reaction, are regulated in the same way as luciferase under the above-described conditions. However, aldehyde dehydrogenase, whose role in V. harveyi aldehyde metabolism is not yet known, is regulated in a different way with respect to nutrient composition. 相似文献
14.
E A Meighen I G Bogacki A Bognar G A Michaliszyn 《Biochemical and biophysical research communications》1976,69(2):423-430
Bioluminescence rises very rapidly in the later stages of growth of due to the induction of luciferase activity. This enzyme catalyzes the oxidation of FMNH2 and a long chain aliphatic aldehyde resulting in the emission of light. The present experiments report the discovery of an aldehyde dehydrogenase in which is remarkably similar to luciferase in its specificity for long chain aliphatic aldehydes. Furthermore, the activity of this enzyme is shown to be induced at the same time as luciferase thus providing strong evidence for a functional implication of aldehyde dehydrogenase in the bioluminescent system of . 相似文献
15.
A NAD+-dependent aldehyde dehydrogenase, the activity of which induces at the same time as luceriferase, has been purified from the bioluminescent bacterium Beneckea harveyi, and its chemical and physical properties have been investigated. The purification is accomplished in three steps resulting in an enzyme preparation that gives a single protein band on three different gel electrophoresis systems. The molecular weight of the purified enzyme was estimated to be 120,000 by gel filtration. Sodium dodecyl sulfate-gel electrophoresis gave a molecular weight of 59,000 indicating that aldehyde dehydrogenase has a dimeric structure with subunits of similar molecular weight. The purified enzyme has a high specificity for long chain aliphatic aldehydes; the Michaelis constants for aldehydes decrease with increasing chain length as also observed for bacterial aldehyde dehydrogenases involved in the metabolism of hydrocarbons. The aldehyde specificity of the aldehyde dehydrogenase is similar to that of luciferase indicating that the functional role of the enzyme may be linked with the bioluminescent system. 相似文献
16.
17.
R Swanson L H Weaver S J Remington B W Matthews T O Baldwin 《The Journal of biological chemistry》1985,260(2):1287-1289
Bacterial luciferase from Vibrio harveyi, the 77,000-dalton light-emitting enzyme of the marine bacterium, has been crystallized into a two million cubic Angstrom cell with P212121 symmetry. The cell constants are a = 59.6 +/- 0.4 A, b = 112 +/- 0.7 A, and c = 302 +/- 2 A. The reflections corresponding to the 302-A cell edge can be resolved by suitable collimation of the incident beam, without resorting to focusing mirrors. The crystals diffract to better than 3-A resolution and are large enough (0.7 mm) for data collection. The crystallization conditions are presented and general crystallization characteristics are discussed. 相似文献
18.
The coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH) catalyzes a key reaction in the acetone- and butanol (solvent)-producing clostridia. It reduces acetyl-CoA and butyryl-CoA to the corresponding aldehydes, which are then reduced by alcohol dehydrogenase (ADH) to form ethanol and 1-butanol. The ALDH of Clostridium beijerinckii NRRL B593 was purified. It had no ADH activity, was NAD(H) specific, and was more active with butyraldehyde than with acetaldehyde. The N-terminal amino acid sequence of the purified ALDH was determined. The open reading frame preceding the ctfA gene (encoding a subunit of the solvent-forming CoA transferase) of C. beijerinckii NRRL B593 was identified as the structural gene (ald) for the ALDH. The ald gene encodes a polypeptide of 468 amino acid residues with a calculated M(r) of 51, 353. The position of the ald gene in C. beijerinckii NRRL B593 corresponded to that of the aad/adhE gene (encoding an aldehyde-alcohol dehydrogenase) of Clostridium acetobutylicum ATCC 824 and DSM 792. In Southern analyses, a probe derived from the C. acetobutylicum aad/adhE gene did not hybridize to restriction fragments of the genomic DNAs of C. beijerinckii and two other species of solvent-producing clostridia. In contrast, a probe derived from the C. beijerinckii ald gene hybridized to restriction fragments of the genomic DNA of three solvent-producing species but not to those of C. acetobutylicum, indicating a key difference among the solvent-producing clostridia. The amino acid sequence of the ALDH of C. beijerinckii NRRL B593 was most similar (41% identity) to those of the eutE gene products (CoA-acylating ALDHs) of Salmonella typhimurium and Escherichia coli, whereas it was about 26% identical to the ALDH domain of the aldehyde-alcohol dehydrogenases of C. acetobutylicum, E. coli, Lactococcus lactis, and amitochondriate protozoa. The predicted secondary structure of the C. beijerinckii ALDH suggests the presence of an atypical Rossmann fold for NAD(+) binding. A comparison of the proposed catalytic pockets of the CoA-dependent and CoA-independent ALDHs identified 6 amino acids that may contribute to interaction with CoA. 相似文献
19.
1. Modification of histidine residue(s) of xanthine dehydrogenase from hen liver by DEP and photooxidation results in loss of the ability to transfer electrons from xanthine to NAD+ and also from NADH to 2,6-dichlorophenolindophenol (DCIP). 2. The kinetics of inactivation suggest that carbethoxylation of more than one histidyl residue in the enzyme may be responsible for the inactivation. 相似文献
20.
Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism 总被引:2,自引:0,他引:2
An important active-site residue in the glycolytic enzyme triosephosphate isomerase is His-95, which appears to act as an electrophilic component in catalyzing the enolization of the substrates. With the techniques of site-directed mutagenesis, His-95 has been replaced by Gln in the isomerase from Saccharomyces cerevisiae. The mutant isomerase has been expressed in Escherichia coli strain DF502 and purified to homogeneity. The specific catalytic activity of the mutant enzyme is less than that of wild type by a factor of nearly 400. The mutant enzyme can be resolved from the wild-type isomerase on nondenaturing isoelectric focusing gels, and an isomerase activity stain shows that the observed catalytic activity indeed derives from the mutant protein. The inhibition constants for arsenate and for glycerol phosphate with the mutant enzyme are similar to those with the wild-type isomerase, but the substrate analogues 2-phosphoglycolate and phosphoglycolohydroxamate bind 8- and 35-fold, respectively, more weakly to the mutant isomerase. The mutant enzyme shows the same stereospecificity of proton transfer as the wild type. Tritium exchange experiments similar to those used to define the free energy profile for the wild-type yeast isomerase, together with a new method of analysis involving 14C and 3H doubly labeled substrates, have been used to investigate the energetics of the mutant enzyme catalyzed reaction. When the enzymatic reaction is conducted in tritiated solvent, the mutant isomerase does not catalyze any appreciable exchange between protons of the remaining substrate and those of the solvent either in the forward reaction direction (using dihydroxyacetone phosphate as substrate) or in the reverse direction (using glyceraldehyde phosphate as substrate). However, the specific radioactivity of the product glyceraldehyde phosphate formed in the forward reaction is 31% that of the solvent, while that of the product dihydroxyacetone phosphate formed in the reverse reaction is 24% that of the solvent. The deuterium kinetic isotope effects observed with the mutant isomerase using [1(R)-2H]dihydroxyacetone phosphate and [2-2H]glyceraldehyde 3-phosphate are 2.15 +/- 0.04 and 2.4 +/- 0.1, respectively. These results lead to the conclusion that substitution of Gln for His-95 so impairs the ability of the enzyme to stabilize the reaction intermediate that there is a change in the pathways of proton transfer mediated by the mutant enzyme. The data allow us more closely to define the role of His-95 in the reaction catalyzed by the wild-type enzyme, while forcing us to be alert to subtle changes in mechanistic pathways when mutant enzymes are generated. 相似文献