首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme preparations of Staphylococcus aureus were examined for their ability to solubilize (32)P-labeled cell walls of the parent organism. Enzymatic activity was observed in the growth medium, in soluble fractions, and associated with native cell walls. Enzyme associated with isolated cell walls could be inactivated with formaldehyde without reducing the susceptibility of the walls to the action of added enzyme. When cells are frozen and thawed, 50 to 75% of the intracellular enzyme is released along with 2% of the intracellular protein. This freeze-thaw extracted enzyme has little, if any, activity on intact S. aureus cells. It appears that the enzyme resides near the cell wall and acts on the cell-wall inner surface.  相似文献   

2.
Lysis of Yeast Cell Walls: Glucanases from Bacillus circulans WL-12   总被引:6,自引:1,他引:6       下载免费PDF全文
Endo-β-(1 → 3)- and endo-β-(1 → 6)-glucanases are produced in high concentration in the culture fluid of Bacillus circulans WL-12 when grown in a mineral medium with bakers' yeast cell walls as the sole carbon source. Much lower enzyme levels were found when laminarin, pustulan, or mannitol was the substrate. The two enzyme activities were well separated during Sephadex G-100 chromatography. The endo-β-(1 → 3)-glucanase was further purified by diethylaminoethyl-cellulose and hydroxyapatite chromatography, whereas the endo-β-(1 → 6)-glucanase could be purified further by diethylamino-ethyl-cellulose and carboxymethyl cellulose chromatography. The endo-β-(1 → 3)-glucanase was specific for the β-(1 → 3)-glucosidic bond, but it did not hydrolyze laminaribiose; laminaritriose was split very slowly. β-(1 → 4)-Bonds in oat glucan in which the glucosyl moiety is substituted in the 3-position were also cleaved. The kinetics of laminarin hydrolysis (optimum pH 5.0) were complex but appeared to follow Michaelis-Menten theory, especially at the lower substrate concentrations. Glucono-δ-lactone was a noncompetitive inhibitor and Hg2+ inhibited strongly. The enzyme has no metal ion requirements or essential sulfhydryl groups. The purified β-(1 → 6)-glucanase has an optimum pH of 5.5, and its properties were studied in less detail. In contrast to the crude culture fluid, the two purified β-glucanases have only a very limited hydrolytic action on cell wall of either bakers' yeast or of Schizosaccharomyces pombe. Although our previous work had assumed that the two glucanases studied here are responsible for cell wall lysis, it now appears that the culture fluid contains in addition a specific lytic enzyme which is eliminated during the extensive purification process.  相似文献   

3.
Isolated and purified cell walls of Staphylococcus aureus were treated with a purified fraction of the culture supernatant fluid of a species of Aeromonas. The course of lysis of the cell walls was followed over a period of time by examination of samples under an electron microscope. The undifferentiated cell wall was rapidly digested, but the equatorial rings were more resistant. The undifferentiated cell wall became a very thin sheet before completely dissolving, leaving a series of equatorial rings of various widths. As digestion proceeded, solubilization of the entire cell wall occurred. Analogous findings were obtained with purified S. aureus mucopeptide. It is concluded that the Aeromonas lytic principle is an enzyme, and that susceptible bonds are more concentrated in the undifferentiated cell wall mucopeptide.  相似文献   

4.
Lytic enzymes were isolated from 14 strains of phage-infected Staphylococcus aureus. Cell walls were prepared from the same uninfected strains of bacteria. Comparison of the lytic rates was made for each enzyme, with each of the cell walls as substrate. Differences in the rate of substrate utilization of the various cell wall types exceeded 10-fold. Cell walls from strains 42E, 29, and 77 were the best substrates, whereas cell walls from strains 3C, 80, and 187 were the poorest substrates. The cell wall amino acid composition is discussed as related to lytic enzyme specificity. A possible explanation of phage typing of staphylococcal cells, based on enzyme activity and cell wall composition, is presented.  相似文献   

5.
Six sites of 2-deoxyglucose (2DG)–induced lysis on three yeasts (Schizosaccharomyces pombe, Pichia farinosa, and Saccharomyces cerevisiae) coincided with the regions of growth of their glucan layers. Identification of the glucan layer as the site of lysis suggests a mechanism of attack by 2DG or by its derivatives. It is proposed that the glucan layer grows by addition of glucose into internal breaks of polysaccharide molecules. 2DG inhibited resynthesis (insertion of glucose) of the broken glycosidic linkage.  相似文献   

6.
7.
《Biophysical journal》2019,116(12):2378-2389
Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting antibiotics. Although previous studies have clarified the biochemical mechanisms of antibiotic action, a physical understanding of the processes leading to lysis remains lacking. Here, we analyze the dynamics of membrane bulging and lysis in Escherichia coli, in which the formation of an initial, partially subtended spherical bulge (“bulging”) after cell wall digestion occurs on a characteristic timescale of 1 s and the growth of the bulge (“swelling”) occurs on a slower characteristic timescale of 100 s. We show that bulging can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner membrane, cell wall, and outer membrane and that the experimentally observed timescales are consistent with model predictions. We then show that swelling is mediated by the enlargement of wall defects, after which cell lysis is consistent with both the inner and outer membranes exceeding characteristic estimates of the yield areal strains of biological membranes. These results contrast biological membrane physics and the physics of thin, rigid shells. They also have implications for cellular morphogenesis and antibiotic discovery across different species of bacteria.  相似文献   

8.
9.
10.
Quantitative Analysis of Actinomyces Cell Walls   总被引:4,自引:1,他引:3       下载免费PDF全文
Quantitative data on the amino acid composition of cell walls of five species of Actinomyces were obtained by using a Beckman-Spinco amino acid analyzer. The major amino acids in A. israelii, A. naeslundii, A. eriksonii, and A. bovis species included alanine, glutamic acid, lysine, aspartic acid, and ornithine, as reported by previous workers, whereas A. propionicus contained diaminopimelic acid. Other amino acids, including glycine, valine, leucine, proline, isoleucine, and threonine, were present in at least some of the walls in quantities equal to or slightly less than that of lysine. This raised the question of whether these may represent cross-links in the peptidoglycan or other cell wall structural components or whether the wall preparations contained nonpeptidoglycan material despite the use of electron microscopy as a standard of purity; further work is required to supply the answer. The quantitative data furnish relative molar concentrations of amino acids, which can provide definitive identification of some of the species and differentiation of Actinomyces from other members of the Actinomycetales and from morphologically similar genera such as Corynebacterium and Propionibacterium.  相似文献   

11.
Salt-induced Contraction of Bacterial Cell Walls   总被引:29,自引:18,他引:11  
Intact Bacillus megaterium cells were found to contract as much as 26% in terms of dextran-impermeable volume when transferred from water to unbuffered, non-plasmolyzing NaCl solutions. This shrinkage appeared to be primarily due to electrostatic wall contraction rather than to any osmotic response of the cells. A variety of salts (but not sucrose) added to water suspensions of isolated cell walls caused protons to be released from the walls with resultant lowering of suspension pH and contraction of the structures. In effect, B. megaterium walls behaved as flexible, amphoteric polyelectrolytes, and their compactness in aqueous suspensions was affected by changes in environmental ionic strength and pH. Isolated walls were most compact in low ionic strength media with a pH of about 4, a value close to the apparent isoelectric pH of wall peptidoglycan. Electrostatic attractions appeared to play a major role in determining the compactness of highly contracted walls, and the walls responded to increased environmental ionic strength by expanding. In contrast, electrostatic repulsions were dominant in highly expanded walls, and increased environmental ionic strength induced wall contraction. Walls of whole bacteria also shrank when the cells were plasmolyzed. This second type of contraction seemed to result from relief of wall tension during plasmolysis, and it could be induced with nonionic solutes. Thus, cell wall tone in B. megaterium appeared to be set both by mechanical tension and by electrostatic interactions among wall ions.  相似文献   

12.
S ummary . There are considerable differences in the extensibility of the cell walls of bacteria in different genera. Gram negative spp. examined were more flexible than the Gram positive ones.  相似文献   

13.
14.
Pectic Metabolism of Growing Cell Walls   总被引:2,自引:16,他引:2       下载免费PDF全文
  相似文献   

15.
A specific glucanase was used to liberate a noncellulosic beta-d-glucan from isolated cell walls of Avena sativa coleoptile tissue. Cell walls of this tissue contain as much as 7 to 9 mg of glucan/100 mg of dry wall. Because of the specific action pattern of the enzyme, a linkage sequence of.. 1 --> 4 Glc 1 --> 3 Glc 1 --> 4 Glc.. is indicated and the predominance of trisaccharide and tetrasaccharide as hydrolytic products suggests a rather regular repeating pattern in the polysaccharide. The trisaccharide and the tetrasaccharide are tentatively identified as 3-O-beta-cellobiosyl-d-glucose and 3-O-beta-cellotriosyl-d-glucose, respectively. Recovery of these oligosaccharides following glucanase treatment of native wall material was feasible only after wall-bound glucosidases were inactivated. In the absence of enzyme inactivation the released fragments were recovered as glucose. The beta-d-glucan was not extracted from walls by either hot water or protease treatment.Cell walls prepared from auxin-treated Avena coleoptile segments yielded less glucan than did segments incubated in buffer suggesting an auxin effect on the quantity of this wall component. No IAA-induced change in the ratio of the trisaccharide and tetrasaccharide could be detected, suggesting no shift in the 1,3 to 1,4 linkage ratio. While the enzyme acts directly on the beta-d-glucan, no elongation response was apparent when Avena sections were treated with the purified glucanase. The presence of the glucan was not associated with any wound response which could be attributed to the preparation of coleoptile segments. The relationship of glucan metabolism to auxin growth responses is discussed.  相似文献   

16.
Infrared spectra of film specimens of the cell wall of Nitella were recorded in the untreated state, after acid treatment, and after treatment for removal of pectic substances and hemicellulose. Assignment of the bands in the spectrum of the wall was made. Polarization measurements on the wall indicate that in addition to cellulose, carboxylate ions, which are attributable to pectic substances, are oriented in the wall. The nature of the bonds holding the oriented carboxylate ions is described.  相似文献   

17.
We inserted all but the extreme 5' end of a DNA copy of the bacteriophage MS2 lysis gene downstream of a lac-induced promoter on a multicopy plasmid. Upon induction, cells harboring this plasmid began to lyse, showing that phage coat protein is not required for the lytic process itself.  相似文献   

18.
The dynamics of nutrients, such as phosphorus, nitrogen, and carbohydrates, during cyanobacteria cell lysis was investigated under darkness incubation in the laboratory. The cell lysis rate of cyanobacteria sampled from Lake Taihu was measured using an esterase assay. Based on particulate esterase activity, the calculated cyanobacteria lysis rate was 0.094 d–1. During 30 days of darkness incubation, Chlorophyll a concentration decreased from 56 μg L–1 to 2.0 μg L–1. Parallel to this, total particulate carbohydrate concentration decreased rapidly. The fluctuation of dissolved organic carbon concentration was a function of the production of non‐carbohydrate by cyanobacteria and the decomposition of carbohydrate by bacteria. Total dissolved carbohydrates and dissolved polysaccharides concentrations showed a similar pattern, declining at the beginning of the experiment and keeping relatively stable, thereafter. In contrast, the concentration of dissolved monosaccharides remained constant during the entire process. The concentrations of NH4+ and PO43– increased at the early stage, and then decreased afterwards. A gradual decrease in NO3 concentration after day 8 indicated that anaerobic conditions might be produced during the cell lysis process. The present results demonstrated cyanobacteria cell lysis has a big influence on the nutrient status of the surrounding water. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The purified red yeast cell wall lytic enzyme of Penicillium lilacinum No. 2093 has a potent saccharifying activity against cell walls, but the living cell lytic activity of it is considerably lower than that of the culture filtrate. Therefore, the living cell lytic factors in the culture filtrate were examined. The alkaline protease of Pen. lilacinum played an important role for living cell lysis. The synergistic effect on living cell lysis was also detected, when acid proteases from various origins were combined with the cell wall lytic enzyme. These results indicated that the protein layers of red yeast cell surface inhibited the action of a glycanase,cell wall lytic enzyme, and the protein molecule contributed to retain the rigid structure of the wall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号