首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selection pressures by which mating preferences for ornamental traits can evolve in genetically monogamous mating systems remain understudied. Empirical evidence from several taxa supports the prevalence of dual‐utility traits, defined as traits used both as armaments in intersexual selection and ornaments in intrasexual selection, as well as the importance of intrasexual resource competition for the evolution of female ornamentation. Here, we study whether mating preferences for traits used in intrasexual resource competition can evolve under genetic monogamy. We find that a mating preference for a competitive trait can evolve and affect the evolution of the trait. The preference is more likely to persist when the fecundity benefit for mates of successful competitors is large and the aversion to unornamented potential mates is strong. The preference can persist for long periods or potentially permanently even when it incurs slight costs. Our results suggest that, when females use ornaments as signals in intrasexual resource competition, males can evolve mating preferences for those ornaments, illuminating both the evolution of female ornamentation and the evolution of male preferences for female ornaments in monogamous species.  相似文献   

2.
Females often choose their mates, instead of mating at random, even when a father contributes nothing but genes to his offspring. Costly female preferences for males with exaggerated traits that reduce viability, such as the peacock's tail, are particularly puzzling. Such preferences can evolve if directly favoured by natural selection or when the exaggerated trait, although maladaptive per se, indicates high overall quality of the male's genotype. Two recent analyses suggested that the advantage to mate choice based on genetic quality is too weak to explain extreme cases of exaggeration of display traits and the corresponding preferences. We studied coevolution of a female mate-preference function and a genotype-dependent male display function where mutation supplies variation in genotype quality and mate preference is costly. Preference readily evolves, often causing extreme exaggeration of the display. Mate choice and trait expression can approach an equilibrium, or a limit cycle, or exaggeration can proceed forever, eventually causing extinction.  相似文献   

3.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   

4.
Exaggerated ornaments often evolve due to the mating preferences of the opposite sex. Genetic correlations between preferences and ornaments can lead both traits to elaborate dramatically in tandem, in a process known as ‘Fisherian runaway’. However, in most previous models of Fisherian runaway, elaborate ornaments are not expected to persist when preferences are consistently costly to the choosing sex. In contrast, we show here that exaggerated male ornaments can be maintained long term even when females must pay a cost to choose their mates. Preferences per se are not costly in our model, but females can only act on their preferences by investing resources in mate search. We predict that mate search effort should decrease with the cost of sampling additional mates and increase with the number of possible ornaments that females can choose from. The potential for multiple exaggerated ornaments to coexist depends on subtleties of their cost structure: strict trade-offs (additive costs) favour sequential ornament evolution, whereas looser trade-offs (multiplicative costs) allow for coexistence. Lastly, we show that pleiotropy affecting both ornaments and preferences makes it difficult for Fisherian runaway to initiate, increasing the evolutionary time until ornamentation. Our model highlights the important but neglected role of mate search effort in sexual selection.  相似文献   

5.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

6.
Male mate choice, expressed through courtship preferences, sometime occurs even under the mating system of polygyny, when the operational sex ratio is skewed toward males. The conditions under which male mate choice may be expected during polygyny are not well established. Servedio and Lande (2006, Evolution 60:674-685), assuming strict polygyny where all females have equal mating success, show that when having a preference does not increase the amount of energy that a male can put into courtship, male preferences for "arbitrary" female ornaments should not be expected to evolve; direct selection acts against them because they place males that carry them into situations in which there is high competition for mates. Here I explore in detail two situations under which logic dictates that this effect may be overcome or reversed. First I determine the contributions that direct and indirect selection place on male versus female preferences for traits that increase viability, using notation that allows the exact expression of these measures of selection. I find that direct selection against male preferences still predominates in the male mate choice model, causing less evolution by male than female preferences under these conditions. Second I address whether male mate choice is likely to evolve as a mechanism of premating isolation leading to species recognition, driven by the process of reinforcement. Reinforcement is compared under male and female mate choice, using a variety of models analyzed by both analytical techniques assuming weak selection and numerical techniques under broader selective conditions. I demonstrate that although under many conditions stronger premating isolation evolves under female mate choice, reinforcement may indeed occur via male mate choice alone.  相似文献   

7.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

8.
Abstract Much of the theory of sexual selection assumes that females do not generally experience difficulties getting their eggs fertilized, yet sperm limitation is occasionally documented. How often does male limitation form a selection for female traits that improve their mating rate? The question is difficult to test, because if such traits evolve to be efficient, sperm limitation will no longer appear to be a problem to females. Here, we suggest that changes in choosiness between populations, and in particular between virgin and mated females, offer an efficient way to test this hypothesis. We model the “wallflower effect,” that is, changes in female preferences due to time and mortality costs of remaining unmated (for at least some time). We show that these costs cause adaptive reductions of female choice, even if mate encounter rates appear high and females only rarely end their lives unfertilized. We also consider the population consequences of plastic or fixed mate preferences at different mate encounter rates. If mate choice is plastic, we confirm earlier verbal models that virgins should mate relatively indiscriminately, but plastic increase of choosiness in later matings can compensate and intensify sexual selection on the male trait, particularly if there is last male sperm precedence. Plastic populations will cope well with unusual conditions: eagerness of virgins leads to high reproductive output and a relaxation of sexual selection at low population densities. If females lack such plasticity, however, population‐wide reproductive output may be severely reduced, whereas sexual selection on male traits remains strong.  相似文献   

9.
The evolution of female mate choice by sexual conflict   总被引:15,自引:0,他引:15  
Although empirical evidence has shown that many male traits have evolved via sexual selection by female mate choice, our understanding of the adaptive value of female mating preferences is still very incomplete. It has recently been suggested that female mate choice may result from females evolving resistance rather than attraction to males, but this has been disputed. Here, we develop a quantitative genetic model showing that sexual conflict over mating indeed results in the joint evolution of costly female mate choice and exaggerated male traits under a wide range of circumstances. In contrast to tradition explanations of costly female mate choice, which rely on indirect genetic benefits, our model shows that mate choice can be generated as a side-effect of females evolving to reduce the direct costs of mating.  相似文献   

10.
Sexual conflict over the indirect benefits of mate choice may arise when traits in one sex limit the ability of the other sex to freely choose mates but when these coercive traits are not necessarily directly harmful (i.e. forced fertilization per se). Although we might hypothesize that females can evolve resistance in order to retain the indirect, genetic benefits (reflected in offspring attractiveness) of mating with attractive males, up to now it has been difficult to evaluate potential underlying mechanisms. Traditional theoretical approaches do not usually conceptually distinguish between female preference for male mating display and female resistance to forced fertilization, yet sexual conflict over indirect benefits implies the simultaneous action of all of these traits. Here, we present an integrative theoretical framework that draws together concepts from both sexual selection and sexual conflict traditions, allowing for the simultaneous coevolution of displays and preferences, and of coercion and resistance. We demonstrate that it is possible for resistance to coercion to evolve in the absence of direct costs of mating to preserve the indirect benefits of mate choice. We find that resistance traits that improve the efficacy of female mating preference can evolve as long as females are able to attain some indirect benefits of mating with attractive males, even when both attractive and unattractive males can coerce. These results reveal new evolutionary outcomes that were not predicted by prior theories of indirect benefits or sexual conflict.  相似文献   

11.
Ornamental secondary sexual traits are hypothesized to evolve in response to directional mating preferences for more ornamented mates. Such mating preferences may themselves evolve partly because ornamentation indicates an individual's additive genetic quality (good genes). While mate choice can also confer non-additive genetic benefits (compatible genes), the identity of the most 'compatible' mate is assumed to depend on the choosy individual's own genotype. It is therefore unclear how choice for non-additive genetic benefits could contribute to directional mating preferences and consequently the evolution of ornamentation. In free-living song sparrows (Melospiza melodia), individual males varied in their kinship with the female population. Furthermore, a male's song repertoire size, a secondary sexual trait, was negatively correlated with kinship such that males with larger repertoires were less closely related to the female population. After excluding close relatives as potential mates, individual females were on average less closely related to males with larger repertoires. Therefore, female song sparrows expressing directional preferences for males with larger repertoires would on average acquire relatively unrelated mates and produce relatively outbred offspring. Such non-additive genetic fitness benefits of directional mating preferences, which may reflect genetic dominance variance expressed in structured populations, should be incorporated into genetic models of sexual selection.  相似文献   

12.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

13.
Theory suggests that genetic polymorphisms in female mating preferences may cause disruptive selection on male traits, facilitating phenotypic differentiation despite gene flow, as in reinforcement or other models of speciation with gene flow. Very little experimental data have been published to test the assumptions regarding the genetics of mate choice that such theory relies on. We generated a population segregating for female mating preferences and male colour dissociated from other species differences by breeding hybrids between species of the cichlid fish genus Pundamilia. We measured male mating success as a function of male colour. First, we demonstrate that non-hybrid females of both species use male nuptial coloration for choosing mates, but with inversed preferences. Second, we show that variation in female mating preferences in an F2 hybrid population generates a quadratic fitness function for male coloration suggestive of disruptive selection: intermediate males obtained fewer matings than males at either extreme of the colour range. If the genetics of female mate choice in Pundamilia are representative for those in other species of Lake Victoria cichlid fish, it may help explain the origin and maintenance of phenotypic diversity despite some gene flow.  相似文献   

14.
When Darwin first proposed the possibility of sexual selection, he identified two mechanisms, male competition for mates and female choice of mates. Extending this classification, we distinguish two forms of mate choice, direct and indirect. This distinction clarifies the relationship between Darwin's two mechanisms and, furthermore, indicates that the potential scope for sexual selection is much wider than thus far realized. Direct mate choice, the focus of most research on sexual selection in recent decades, requires discrimination between attributes of individuals of the opposite sex. Indirect mate choice includes all other behavior or morphology that restricts an individual's set of potential mates. Possibilities for indirect mate choice include advertisement of fertility or copulation, evasive behavior, aggregation or synchronization with other individuals of the same sex, and preferences for mating in particular locations. In each of these cases, indirect mate choice sets the conditions for competition among individuals of the opposite sex and increases the chances of mating with a successful competitor. Like direct mate choice, indirect mate choice produces assortative mating. As a consequence, the genetic correlation between alleles affecting indirect choice and those affecting success in competition for mates can produce self-accelerating evolution of these complementary features of the sexes. The broad possibilities for indirect mate choice indicate that sexual selection has more pervasive influences on the coevolution of male and female characteristics than previously realized.  相似文献   

15.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

16.
The general hypothesis of mate choice based on non-additive genetic traits suggests that individuals would gain important benefits by choosing genetically dissimilar mates (compatible mate hypothesis) and/or more heterozygous mates (heterozygous mate hypothesis). In this study, we test these hypotheses in a socially monogamous bird, the blue tit (Cyanistes caeruleus). We found no evidence for a relatedness-based mating pattern, but heterozygosity was positively correlated between social mates, suggesting that blue tits may base their mating preferences on partner''s heterozygosity. We found evidence that the observed heterozygosity-based assortative mating could be maintained by both direct and indirect benefits. Heterozygosity reflected individual quality in both sexes: egg production and quality increased with female heterozygosity while more heterozygous males showed higher feeding rates during the brood-rearing period. Further, estimated offspring heterozygosity correlated with both paternal and maternal heterozygosity, suggesting that mating with heterozygous individuals can increase offspring genetic quality. Finally, plumage crown coloration was associated with male heterozygosity, and this could explain unanimous mate preferences for highly heterozygous and more ornamented individuals. Overall, this study suggests that non-additive genetic traits may play an important role in the evolution of mating preferences and offers empirical support to the resolution of the lek paradox from the perspective of the heterozygous mate hypothesis.  相似文献   

17.
Sexual selection via female mate choice can result in the evolution of elaborate male traits that incur substantial costs for males. Despite increased interest in how female mating preferences contribute to the evolution of male traits, few studies have directly quantified the locomotor costs of such traits. A sexually selected trait that could affect movement costs is the sword exhibited by male swordtail fishes: while longer swords may increase male mating success, they could negatively affect the hydrodynamic aspects of swimming activities. Here, we examine the energetic costs of the sword in Xiphophorus montezumae by experimentally manipulating sword length and measuring male aerobic metabolism during two types of activity, routine swimming and courtship swimming. Direct measurements of oxygen consumption indicate that males with longer swords expend more energy than males with shortened swords during both types of swimming. In addition, the sword increases the cost of male courtship. Thus, while sexual selection via female choice favours long swords, males with longer swords experience higher metabolic costs during swimming, suggesting that sexual and natural selection have opposing effects on sword evolution. This study demonstrates a hydrodynamic cost of a sexually selected trait. In addition, this study discriminates between the cost of a sexually selected trait used in courtship and other courtship costs.  相似文献   

18.
Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species.  相似文献   

19.
Among the factors that can influence female mate choice decisions is the degree to which females differentiate among similar displays: as differences decrease, females are expected to eventually stop discriminating. This discrimination threshold, in conjunction with the magnitude of male trait variation females regularly encounter while making mate choice decisions, may have important consequences for sexual selection. If local display variation is above the discrimination threshold, female preferences should translate into higher mating success for the more attractive male. But if display variation is frequently below the threshold, the resulting increased pattern of random mating may obscure the existence of female mate choice. I investigated the interplay between female discrimination and male display variation in green treefrogs (Hyla cinerea) and found that call trait differences between nearest neighbour males were frequently smaller than what females are expected to discriminate. This finding has two important consequences for our understanding of sexual selection in the wild: first, low display variation should weaken the strength of selection on male display traits, but the direction of selection should mirror the one predicted from females choice trials. Second, caution is needed when interpreting data on realized mating success in the wild: a pattern of random mating with respect to male display traits does not always mean that female preferences are weak or that conditions are too challenging for females to express their preferences. Rather, insufficient display variation can generate the same pattern.  相似文献   

20.
A Fisherian model of sexual selection is combined with a diffusion model of mate dispersal to investigate the evolution of assortative mating in a sympatric population. Females mate with one of two types of polygynous males according to a male's display of one of two sex-limited, autosomal traits; these male traits may be associated with differential phenotypic mortalities. Through a Fisherian runaway process, female preferences and male traits can become associated in linkage disequilibrium, leading to patterns of assortative mating. Dispersing males, whose rate of movement is dependent on mating success, carry female preference genes with them, and displaced males thereby produce daughters with preference genes for their respective traits in locally higher than average frequencies. The reduced diffusion of the more preferred males permits the success of other male types in adjacent areas. Thus, mating-success dependent diffusion, when coupled with the rapid divergence in phenotypes possible under the Fisher process, can lead to the coexistence of two female preferences and two male traits in sympatry. We argue that many existing approaches to sympatric speciation fail to explain observed male polymorphisms because they exclude explicit spatial structure from their speciation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号