首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

2.
3.
In social animals, inbreeding depression may manifest by compromising care or resources individuals receive from inbred group members. We studied the effects of worker inbreeding on colony productivity and investment in the ant Formica exsecta. The production of biomass decreased with increasing inbreeding, as did biomass produced per worker. Inbred colonies produced fewer gynes (unmated reproductive females), whereas the numbers of males remained unchanged. As a result, sex ratios showed increased male bias, and the fraction of workers increased among the diploid brood. Males raised in inbred colonies were smaller, whereas the weight of gynes remained unchanged. The results probably reflect a trade-off between number and quality of offspring, which is expected if the reproductive success of gynes is more dependent on their weight or condition than it is for males. As males are haploid (with the exception of abnormal diploid males produced in very low frequencies in this population), and therefore cannot be inbred themselves, the effect on their size must be mediated through the workers of the colony. We suggest the effects are caused by the inbred workers being less proficient in feeding the growing larvae. This represents a new kind of social inbreeding depression that may affect sex ratios as well as caste fate in social insects.  相似文献   

4.
In polygynous (multiple queens per nest) colonies of socialinsects, queens can increase their reproductive share by layingmore eggs or by increasing the proportion of eggs that developinto reproductive individuals instead of workers. We used polymorphicmicrosatellite loci to determine the genetically effective contributionof queens to the production of gynes (new queens), males, and2 different cohorts of workers in a polygynous population ofthe ant Formica exsecta. For this purpose, we developed a newmethod that can be used for diploid and haplodiploid organismsto quantify the degree of reproductive specialization amongbreeders in societies where there are too many breeders to ascertainparentage. Using this method, we found a high degree of reproductivespecialization among nest-mate queens in both female- and male-producingcolonies (sex ratio is bimodally distributed in the study population).For example, a high effective proportion of queens (25% and79%, respectively) were specialized in the production of malesin female- and male-producing colonies. Our analyses furtherrevealed that in female-producing colonies, significantly fewerqueens contributed to gyne production than to worker production.Finally, we found significant changes in the identity of queenscontributing to different cohorts of workers. Altogether, thesedata demonstrate that colonies of F. exsecta, and probably thoseof many other highly polygynous social insect species, are composedof reproductive individuals differing in their investment togynes, males, and workers. These findings demonstrate a newaspect of the highly dynamic social organization of complexanimal societies.  相似文献   

5.
Sex ratios in social insects have become a general model for tests of inclusive fitness theory, sex ratio theory and parent–offspring conflict. In populations of Formica exsecta with multiple queens per colony , sex ratios vary greatly among colonies and the dry-weight sex ratio is extremely male-biased, with 89% of the colonies producing males but no gynes (reproductive females). Here we test the queen-replenishment hypothesis, which was proposed to explain sex ratio specialization in this and other highly polygynous ants (i.e. those with many queens per nest). This hypothesis proposes that, in such ants, colonies produce gynes to recruit them back into the colony when the number of resident queens falls below a given threshold limiting colony productivity or survival. We tested predictions of the queen-replenishment hypothesis by following F. exsecta colonies across two breeding seasons and relating the change in effective queen number with changes in sex ratio, colony size and brood production. As predicted by the queen-replenishment hypothesis, we found that colonies that specialized in producing females increased their effective queen number and were significantly more likely to specialize in male production the following year. The switch to male production also coincided with a drop in productivity per queen as predicted. However, adoption of new queens did not result in a significant increase in total colony productivity the following year. We suggest that this is because queen production comes at the expense of worker production and thus queen production leads to resource limitation the following year, buffering the effect of greater queen number on total productivity.  相似文献   

6.
Kümmerli R  Keller L 《Molecular ecology》2007,16(21):4493-4503
The theory of inclusive fitness provides a powerful explanation for reproductive altruism in social insects, whereby workers gain inclusive fitness benefit by rearing the brood of related queens. Some ant species, however, have unicolonial population structures where multiple nests, each containing numerous queens, are interconnected and individuals move freely between nests. In such cases, nestmate relatedness values may often be indistinguishable from zero, which is problematic for inclusive fitness-based explanations of reproductive altruism. We conducted a detailed population genetic study in the polygynous ant Formica exsecta, which has been suggested to form unicolonial populations in its native habitat. Analyses based on adult workers indeed confirmed a genetic structuring consistent with a unicolonial population structure. However, at the population level the genetic structuring inferred from worker pupae was not consistent with a unicolonial population structure, but rather suggested a multicolonial population structure of extended family-based nests. These contrasting patterns suggest limited queen dispersal and free adult worker dispersal. That workers indeed disperse as adults was confirmed by mark-recapture measures showing consistent worker movement between nests. Together, these findings describe a new form of social organization, which possibly also characterizes other ant species forming unicolonial populations in their native habitats. Moreover, the genetic analyses also revealed that while worker nestmate relatedness was indistinguishable from zero at a small geographical scale, it was significantly positive at the population level. This highlights the need to consider the relevant geographical scale when investigating the role of inclusive fitness as a selective force maintaining reproductive altruism.  相似文献   

7.
Wolbachia bacteria are intracellular symbionts of many arthropod species. Their spread through host populations is promoted by drastic alterations imposed on their hosts' reproductive physiology. In the present study, we analyzed the association between Wolbachia strains and host mitochondrial haplotypes in a Swiss population of the ant Formica exsecta. In this species, female dispersal is extremely limited and the mitochondrial haplotypes are strongly differentiated between and within subpopulations. Our study revealed exceptionally high levels of multiple infection, with all ants harboring four or five distinct Wolbachia strains. Four of these strains were present in all ants analyzed. A fifth strain was associated with only three of the five mitochondrial haplotypes. An analysis of the Wolbachia gene wsp further revealed an unexpected high rate of recombination, with three of the five Wolbachia strains appearing to have arisen by homologous recombination.  相似文献   

8.
9.
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood‐tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood‐tending workers often develop ovaries and start to reproduce. Here, we make use of this ability in the ant Temnothorax longispinosus and compare gene expression patterns in the queens and three worker castes along a reproductive gradient. We found the largest expression differences between the queen and the worker castes (~2500 genes) and the smallest differences between infertile brood‐tenders and foragers (~300 genes). The expression profile of fertile workers is more worker‐like, but to a certain extent intermediate between the queen and the infertile worker castes. In contrast to the queen, a high number of differentially expressed genes in the worker castes are of unknown function, pointing to the derived status of hymenopteran workers within insects.  相似文献   

10.
The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism.  相似文献   

11.
Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex‐ and tissue‐specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male‐biased than female‐biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic‐specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast‐Z effect where hemizygosity influences the rate of adaptive substitutions.  相似文献   

12.
The fathead minnow Pimephales promelas serves as a model organism for assessing the effects of environmental contaminants on early life stage growth and development. Yet, the utilization of genomic tools has been hindered by the lack of genome sequence and genomic information known from this model species. Utilizing published cDNA library sequences, the authors used sequence similarity to compare 4105 cDNAs isolated from fathead minnow fry (<14 days old) with over 250 000 adult cDNA sequences derived from whole body and various tissue types. The objectives of the computational subtraction were to (1) assess the extent of sequence similarity between developing and adult cDNA libraries and (2) predict which cDNA clones are expressed only in developing organisms. The results of the computational predictions were assessed through the construction of a development‐specific DNA microarray targeting all 4105 sequences in the fry cDNA library as well as 56 known mRNAs in P. promelas. Gene expression was determined by comparing total RNA isolated from fry with total RNA isolated from adult samples (whole animal, kidney, liver, brain, ovary and testes). The results showed that 1381 of the targeted fry cDNA sequences (34%) displayed expression across all sample comparisons, and of these, only 166 genes were found to harbour fry‐specific expression (i.e. no expression in adult samples). Of note, 69% of the genes computationally predicted to be fry specific were found across all experimental results; yet, only 27% of the computationally predicted fry‐specific sequences were experimentally confirmed to be fry specific. An important result was the identification of many novel mRNA sequences specific to the developing minnow, which lack homology with any other known sequence. In addition, the study results included tissue‐specific expression in adult samples. These results demonstrate the capabilities and limitations of inter‐library sequence comparisons as a predictor of gene activity in non‐sequenced organisms and tissues, as well as DNA microarray gene expression studies in non‐sequenced organisms.  相似文献   

13.
Estimating differences in gene expression among alleles is of high interest for many areas in biology and medicine. Here, we present a user‐friendly software tool, Allim, to estimate allele‐specific gene expression. Because mapping bias is a major problem for reliable estimates of allele‐specific gene expression using RNA‐seq, Allim combines two different strategies to account for the mapping biases. In order to reduce the mapping bias, Allim first generates a polymorphism‐aware reference genome that accounts for the sequence variation between the alleles. Then, a sequence‐specific simulation tool estimates the residual mapping bias. Statistical tests for allelic imbalance are provided that can be used with the bias corrected RNA‐seq data.  相似文献   

14.
15.
16.
17.
Anabarilius grahami is a cyprinoid fish endemic to Fuxian Lake, Yunnan, China. In this study, a comprehensive staging series of A. grahami was produced. The embryonic development of A. grahami was divided into six main periods: zygote period, cleavage period, blastula period, gastrula period, segmentation period and hatching period. Its embryonic development is essentially similar to that of zebrafish Danio rerio but relatively slower. The expression patterns of A. grahami sox2, pax6a, six3a and rx2 genes were also cloned and checked during eye development. The four genes showed similar expression patterns to their D. rerio homologues, suggesting the evolutionary conservation of the regulatory network of eye development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号