首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number.  相似文献   

2.
The influence of large predators on lower trophic levels in oligotrophic, structurally complex, and frequently disturbed aquatic environments is generally thought to be limited. We looked for effects of large predators in two semi-permanent, spikerush-dominated marshes by excluding large fish (>12 mm body depth) and similarly sized herpetofauna from 1 m2 cages (exclosures) for 2 weeks. The exclosures allowed for colonization by intermediate (in size and trophic position) consumers, such as small fish, shrimp, and crayfish. Exclosures were compared to control cages that allowed large fish to move freely in and out. At the end of the experiment, intermediate-consumer densities were higher in exclosures than in controls at both sites. Decapod crustaceans, especially the riverine grass shrimp (Palaemonetes paludosus), accounted for the majority of the response. Effects of large fish on shrimp were generally consistent across sites, but per capita effects were sensitive to estimates of predator density. Densities of intermediate consumers in our exclosures were similar to marsh densities, while the open controls had lower densities. This suggests that these animals avoided our experimental controls because they were risky relative to the surrounding environment, while the exclosures were neither avoided nor preferred. Although illuminating about the dynamics of open-cage experiments, this finding does not influence the main results of the study. Small primary consumers (mostly small snails, amphipods, and midges) living on floating periphyton mats and in flocculent detritus (“floc”) were less abundant in the exclosures, indicative of a trophic cascade. Periphyton mat characteristics (i.e., biomass, chlorophyll a, TP) were not clearly or consistently affected by the exclosure, but TP in the floc was lower in exclosures. The collective cascading effects of large predators were consistent at both sites despite differences in drought frequency, stem density, and productivity.  相似文献   

3.
Linearity in the aggregate effects of multiple predators in a food web   总被引:5,自引:0,他引:5  
Theory in community ecology often assumes that predator species have similar indirect effects and thus can be treated mathematically as a single functional unit (e.g. guild or trophic level). This assumption is questionable biologically because predator species typically differ in their effects, creating the potential for nonlinearities when they coexist. We evaluated the nature of indirect effects caused by three species of hunting spider predators, singly and in multiple species combinations, on grass and herb plants in experimental old-field food webs. Despite the potential for nonlinearity, indirect effects in different multiple predator combinations consistently did not differ significantly from the respective means of the single species effects. Thus, for this experimental system, the whole was simply the average of the parts. Consequently, models which abstract predator species as single trophic levels would successfully predict indirect effects in this system regardless of the composition of the predator fauna.  相似文献   

4.
Using lines artificially selected on egg size and being subjected to a restricted and an unrestricted feeding treatment, we examined the relationships between egg size, egg number, egg composition, and reproductive investment in the butterfly Bicyclus anynana . Despite a successful manipulation of egg size, correlated responses to selection in larval time, pupal mass, pupal time, longevity, fecundity, or the amount of energy allocated to reproduction were virtually absent. Thus, there was no indication for an evolutionary link between offspring size and reproductive investment. Egg composition, in contrast, was affected by selection, with larger eggs containing relatively more lipid and water, but less protein and energy compared to smaller eggs. Hence, females producing large eggs did not have to sacrifice fecundity due to adjustments in egg composition. Food limitation per se caused only minor changes in egg composition, and there was no general reduction in egg provisioning with female age. The latter was restricted to food-limited females, whereas egg quality remained remarkably similar throughout the females' life in control groups. We conclude that neglecting changes in biochemical egg composition, depending on genetic background, food availability, and female age, may introduce substantial error when estimating reproductive effort, and may ultimately lead to invalid conclusions.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 403–418.  相似文献   

5.
Abstract. In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post‐embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade‐off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host‐seed availability and better exploitation of the environments of this widespread stored‐seed pest.  相似文献   

6.
To investigate whether or not oviposition on substrates other than host plants (e.g., non‐host plants, abiotic materials) would affect the evolution of egg size in phytophagous insects, we studied the winter cherry bug, Acanthocoris sordidus (Thunberg) (Heteroptera: Coreidae), as a model organism for its interpopulation variation in oviposition preference. The rate of oviposition off host plants is much higher in the Amami Island population than in either the Kyoto or Kochi populations. We compared egg size and number among the three local populations from Kyoto, Kochi, and Amami Island. In addition, to evaluate the adaptive significance of larger eggs for offspring in terms of searching for host plants, we examined the relationship between egg size and first‐instar body size. We also searched for a relationship between egg size and starvation tolerance in the second instars because first instars can develop to second instars without food intake, and thus the substantial host‐searching stage is the second instar, when females lay their eggs off host plants. Females from the Amami population produced fewer larger eggs than females from either the Kyoto or Kochi population. Regardless of the local population, the body size of first instars that emerged from larger eggs was larger, and the second instars originating from larger eggs had a higher starvation tolerance. The larger body size and higher starvation tolerance should enable nymphs to disperse further, which may enhance the probability of successfully reaching host plants. These results suggest that egg size in A. sordidus may be determined in relation to its oviposition habits to maximize reproductive success, resulting in interpopulation variation in egg size.  相似文献   

7.
The evolution of egg size in the brood parasitic cuckoos   总被引:2,自引:0,他引:2  
We compared genera of nonparasitic cuckoos and two groups ofparasitic cuckoos: those raised together with host young ("nonejectors")and those in which the newly hatched cuckoo either ejects thehost eggs or chicks, or kills the host young ("ejectors"). Nonejectorsare similar to their hosts in body size and parasitize largerhosts than do ejectors, which parasitize hosts much smallerthan themselves. In both types of parasite, the cuckoo's eggtends to match the host eggs in size. To achieve this, nonejectorshave evolved a smaller egg for their body size than have nonparasiticcuckoos, and ejectors have evolved an even smaller egg. Amongejector cuckoo genera, larger cuckoos have larger eggs relativeto the eggs of their hosts, and the relationship between cuckooegg volume (mass of the newly-hatched cuckoo) and host egg volume(mass to be ejected) did not differ from that predicted by weight-liftingallometry. However, comparing among Cuculus cuckoo species,the allometric slope differed from the predicted, so it is notclear that egg size is related to the need to give the cuckoochick sufficient strength for ejection. Comparing the two mostspeciose ejector genera, Chrysococcyx cuckoos (smaller and parasitizedome-nesting hosts) lay eggs more similar in size to their host'seggs than do Cuculus cuckoos (larger and parasitize open cup–nestinghosts). Closer size-matching of host eggs in Chrysococcyx mayreflect the following: (1) selection to reduce adult body massto facilitate entry through small domed nest holes to lay, and(2) less need for a large egg, because longer incubation periodsin dome-nesting hosts allow the young cuckoo more time to growbefore it need eject host eggs.  相似文献   

8.
Social evolution has led to distinct life‐history patterns in social insects, but many colony‐level and individual traits, such as egg size, are not sufficiently understood. Thus, a series of experiments was performed to study the effects of genotypes, colony size and colony nutrition on variation in egg size produced by honey bee (Apis mellifera) queens. Queens from different genetic stocks produced significantly different egg sizes under similar environmental conditions, indicating standing genetic variation for egg size that allows for adaptive evolutionary change. Further investigations revealed that eggs produced by queens in large colonies were consistently smaller than eggs produced in small colonies, and queens dynamically adjusted egg size in relation to colony size. Similarly, queens increased egg size in response to food deprivation. These results could not be solely explained by different numbers of eggs produced in the different circumstances but instead seem to reflect an active adjustment of resource allocation by the queen in response to colony conditions. As a result, larger eggs experienced higher subsequent survival than smaller eggs, suggesting that honey bee queens might increase egg size under unfavourable conditions to enhance brood survival and to minimize costly brood care of eggs that fail to successfully develop, and thus conserve energy at the colony level. The extensive plasticity and genetic variation of egg size in honey bees has important implications for understanding life‐history evolution in a social context and implies this neglected life‐history stage in honey bees may have trans‐generational effects.  相似文献   

9.
The influence of different food availability on egg size and egg mass in Daphnia magna Straus was studied in long-term experiments using a flow-through system. Daphnia were either kept a constant high or low food levels or subjected to alternating periods of high food and starvation. Some animals were starved continuously after they had deposited their first clutch of eggs. Eggs were measured and weighed and their density (dry mass per volume) was determined. The results support the model of Glazier (1992), which defines a region of reproductive constraint at very low food concentrations and a region of adaptive response as food concentration increase. Egg sizes were largest under continuously low food concentrations (0.1 mg Cl–1), which indicates that the maximum of Glazier's non-linear response curve is at very low food levels. Eggs produced during starvation were small, probably as a result of reproductive constraints. Egg density was about 0.37 mg dry weight mm–1 and did not differ between treatments.  相似文献   

10.
Trade‐offs between life‐history traits – such as fecundity and survival – have been demonstrated in several studies. In eusocial insects, the number of organisms and their body sizes can affect the fitness of the colony. Large‐than‐average body sizes as well as more individuals can improve a colony's thermoregulation, foraging efficiency, and fecundity. However, in bumblebees, large colonies and large body sizes depend largely on high temperatures and a large amount of food resources. Bumblebee taxa can be found in temperate and tropical regions of the world and differ markedly in their colony sizes and body sizes. Variation in colony size and body size may be explained by the costs and benefits associated with the evolutionary history of each species in a particular environment. In this study, we explored the effect of temperature and precipitation (the latter was used as an indirect indicator of food availability) on the colony and body size of twenty‐one bumblebee taxa. A comparative analysis controlling for phylogenetic effects as well as for the body size of queens, workers, and males in bumblebee taxa from temperate and tropical regions indicated that both temperature and precipitation affect colony and body size. We found a negative association between colony size and the rainiest trimester, and a positive association between the colony size and the warmest month of the year. In addition, male bumblebees tend to evolve larger body sizes in places where the rain occurs mostly in the summer and the overall temperature is warmer. Moreover, we found a negative relationship between colony size and body sizes of queens, workers, and males, suggesting potential trade‐offs in the evolution of bumblebee colony and body size.  相似文献   

11.
Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade‐offs between brain size and sexual traits. Instead, larger‐brained males had higher expression of several primary and precopulatory sexual traits – they had longer genitalia, were more colourful and developed longer tails than smaller‐brained males. Larger‐brained males were also in better body condition when housed in single‐sex groups. There was no difference in post‐copulatory sexual traits between males from the large‐ and small‐brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated.  相似文献   

12.
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size.  相似文献   

13.
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709.  相似文献   

14.
Understanding food‐web dynamics requires knowing whether species assemblages are compartmentalized into distinct energy channels, and, if so, how these channels are structured in space. We used isotopic analyses to reconstruct the food web of a Kenyan wooded grassland. Insect prey were relatively specialized consumers of either C3 (trees and shrubs) or C4 (grasses) plants. Arboreal predators (arthropods and geckos) were also specialized, deriving c. 90% of their diet from C3‐feeding prey. In contrast, ground‐dwelling predators preyed considerably upon both C3‐ and C4‐feeding prey. This asymmetry suggests a gravity‐driven subsidy of the terrestrial predator community, whereby tree‐dwelling prey fall and are consumed by ground‐dwelling predators. Thus, predators in general couple the C3 and C4 components of this food web, but ground‐dwelling predators perform this ecosystem function more effectively than tree‐dwelling ones. Although prey subsidies in vertically structured terrestrial habitats have received little attention, they are likely to be common and important to food‐web organization.  相似文献   

15.
1. Generalist predators sharing similar food resources and phenologies as well as having no competitive interactions are expected to have a similar life-history pattern, but some closely related web spiders show different life-history traits. The present paper clarifies possible selection pressures affecting life-history traits of the three coexisting Cyclosa spiders and explores the significance of the life-history variation.
2. Cyclosa argenteoalba had lower daily survival rate and higher growth rate, C. sedeculata had higher daily survival rate and lower growth rate, and C. octotuberculata showed intermediate levels. This implies that the selection pressures these spiders experience differ appreciably even in the same habitat.
3. The significance of the life-history characteristics of the three species was evaluated by general life-history theories. Cyclosa argenteoalba showed distinguishing reproductive traits: shorter time to maturation, larger reproductive effort, larger relative clutch size, decreased clutch size with the number of clutches, and smaller egg size. These characteristics may have evolved in response to the larger ratio of juvenile to adult survivorship. Cyclosa octotuberculata had a clutch size much larger than the other two species, but relative clutch sizes accounting for body size were similar between C. octotuberculata and C. sedeculata . Also, the two species showed a similar time to maturation despite having different selection pressures. Probably, higher growth rate compensates for lower survivorship, leading to the similarity in some reproductive traits.  相似文献   

16.
17.
18.
Summary In many species of insect parasitoids, adult females mature eggs as they search their environment for hosts. In such species, the number of mature eggs, at the point of finding a host, is a function of the interhost time and the rate of egg maturation. Assuming that interhost search times are variable, we use a version of the marginal value theorem to derive a decision rule for optimizing the time spent exploiting individual hosts; this indirectly determines clutch size. We find that a threshold search time exists above which a female should simply lay her currently mature eggs and depart from the host. However, when the search time has been less than the threshold, a female should oviposit, but then remain on the host to mature and lay additional eggs, until the threshold time is reached.  相似文献   

19.
1. Social species in the spider genus Anelosimus predominate in lowland tropical rainforests, while congeneric subsocial species occur at higher elevations or higher latitudes. 2. We conducted a comparative study to determine whether differences in total biomass, insect size or both have been responsible for this pattern. 3. We found that larger average insect size, rather than greater overall biomass per se, is a key characteristic of lowland tropical habitats correlating with greater sociality. 4. Social species occupied environments with insects several times larger than the spiders, while subsocial species nearing dispersal occupied environments with smaller insects in either high or low overall biomass. 5. Similarly, in subsocial spider colonies, individuals lived communally at a time when they were younger and therefore smaller than the average insect landing on their webs. 6. We thus suggest that the availability of large insects may be a critical factor restricting social species to their lowland tropical habitats.  相似文献   

20.
Sexual selection, through female choice and/or male–male competition, has influenced the nature and direction of sexual size dimorphism in numerous species. However, few studies have examined the influence of sperm competition on size dimorphism. The orb‐web spider Nephila edulis has a polygamous mating system and extreme size dimorphism. Additionally, the frequency distribution of male body size is extremely skewed with most males being small and few large. The duration of copulation, male size and sexual cannibalism have been identified as the significant factors determining patterns of sperm precedence in spiders. In double mating trials, females were assigned to three treatments: either they mated once with both males or the first or the second male was allowed to mate twice. Paternity was strongly associated with the duration of copulation, independent of mating order. Males that were allowed to mate twice not only doubled the duration of copulation but also their paternity. Small males had a clear mating advantage, they copulated longer than large males and fertilized more eggs. Males of different sizes used different tactics to mate. Large males were more likely to mate through a hole they cut into the web, whereas small males approached the female directly. Furthermore, small males usually mated at their first attempt but large males required several attempts before mating took place. There was no obvious female reaction towards males of different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号