首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density.  相似文献   

2.
3.
Female multiple mating (polyandry) is a widespread but costly behavior that remains poorly understood. Polyandry may arise when whatever benefits females accrue from multiple mating outweigh the costs, or males manipulate females against the females' best interests. In a polyandrous spider Stegodyphus lineatus females may mate with up to five males, but behave aggressively toward additional males after the first mating. Female aggressiveness may act to select for better quality males. Alternatively, females may try to avoid superfluous matings. To test these alternatives, we allocated females into single-mating (SM) and double-mating treatments. Double-mated females either accepted (DM) or rejected (RE) the second male. DM females laid more eggs, but did not produce more offspring than SM and RE females. Offspring of DM females were smaller at dispersal than offspring of SM and RE females. Also, nest failure was significantly more common in DM females. Paternal variables did not influence female reproductive success, whereas maternal body condition explained much of the variation. We show that polyandry is costly for females despite the production of larger clutches and suggest that multiple mating results from male manipulation of female remating behavior.  相似文献   

4.
Male reproductive success generally increases with number of mates but this need not be true for females. If females are the limiting sex, as few as one mate can be optimal. Despite the theoretical differences driving multiple mating in the sexes, multiple mating is the norm rather than the exception. Empirical investigations are therefore required to determine why females mate with multiple males. Both nonadaptive (correlated responses to selection on males, given the mean mating rates have to be the same) and adaptive (direct or indirect fitness benefits) can drive the evolution of multiple mating in females. Females of the burying beetle Nicorphorus vespilloides often mate repeatedly with the same male, but this appears to be a correlated response to selection on males rather than reflecting direct benefits to females for multiple mating. However, an unexamined alternative to this nonadaptive explanation is that females benefit by mating with multiple different males and therefore are selected for general promiscuity. Here we examine if mating polyandrously provides fitness benefits by examing the effects of number of mates (1, 2 or 3), mating system (monogamous, polyandrous) and their interaction. The only significant influence was mating more than once. This did not depend on type of mating. We suggest that unlike most other species examined, in N. vespilloides mating with the same male repeatedly or with several different males reflects an indiscriminate willingness to mate as a result of correlated selection on males for high rates of mating.  相似文献   

5.
6.
Sexual conflict can drive intersexual arms races, with female resistance and male persistence traits coevolving antagonistically. Such arms races are well documented in some diving beetles, although the extent of sexual conflict in this family remains unclear. The European dytiscid Agabus uliginosus has a strikingly dimorphic female; individuals from most regions are smooth and male‐like, whereas those from some populations have a strongly roughened dorsum, a trait that has attracted the name dispar. We demonstrate that rough and smooth females differ consistently in the development of dorsal surface microreticulation, and that these females are associated with males that differ in the development of their persistence traits. These findings extend the occurrence of pre‐insemination sexual conflict and associated intrasexual dimorphism in Dytiscidae, and suggest that such mating systems are relatively widespread in these beetles.  相似文献   

7.
8.
Abstract The optimal number of mating partners for females rarely coincides with that for males, leading to sexual conflict over mating frequency. In the bruchid beetle Callosobruchus maculatus, the fitness consequences to females of engaging in multiple copulations are complex, with studies demonstrating both costs and benefits to multiple mating. However, females kept continuously with males have a lower lifetime egg production compared with females mated only once and then isolated from males. This reduction in fitness may be a result of damage caused by male genitalia, which bear spines that puncture the female’s reproductive tract, and/or toxic elements in the ejaculate. However, male harassment rather than costs of matings themselves could also explain the results. In the present study, the fitness costs of male harassment for female C. maculatus are estimated. The natural refractory period of females immediately after their first mating is used to separate the cost of harassment from the cost of mating. Male harassment results in females laying fewer eggs and this results in a tendency to produce fewer offspring. The results are discussed in the context of mate choice and sexual selection.  相似文献   

9.
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates'' offspring, i.e. only when Cov(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak.  相似文献   

10.
Sexual selection is an important agent of evolutionary change, but the strength and direction of selection often vary over space and time. One potential source of heterogeneity may lie in the opportunity for male–male and/or male–female interactions imposed by the spatial environment. It has been suggested that increased spatial complexity permits sexual selection to act in a complementary fashion with natural selection (hastening the loss of deleterious alleles and/or promoting the spread of beneficial alleles) via two (not mutually exclusive) pathways. In the first scenario, sexual selection potentially acts more strongly on males in complex environments, allowing males of greater genetic “quality” a greater chance of outcompeting rivals, with benefits manifested indirectly in offspring. In the second scenario, increased spatial complexity reduces opportunities for males to antagonistically harm females, allowing females (especially those of greater potential fecundities) to achieve greater reproductive success (direct fitness benefits). Here, using Drosophila melanogaster, we explore the importance of these mechanisms by measuring direct and indirect fitness of females housed in simple vial environments or in vials in which spatial complexity has been increased. We find strong evidence in favor of the female conflict‐mediated pathway as individuals in complex environments remated less frequently and produced more offspring than those housed in a simpler spatial environment, but no difference in the fitness of sons or daughters. We discuss these results in the context of other recent studies and what they mean for our understanding of how sexual selection operates.  相似文献   

11.
Understanding why females mate multiply is a major issue in evolutionary ecology. We investigated the consequences of an asynchronous arrival pattern on male competition and multiple paternity in the apparently monoandrous agile frog ( Rana dalmatina ). The largest frogs arrived first and both males and females lost weight significantly during the spawning period. Asynchronous arrival at breeding sites resulted in a male-biased operational sex ratio (OSR). The OSR was more strongly male-biased at the beginning and at the end of the breeding period when the number of satellite males increased. All females mated only once, but multiple paternity within clutches occurred at the beginning and the end of the breeding period. The influence of asynchronous arrival and biased sex ratio suggests that reduced variance or bet-hedging promoting female fitness had only a reduced role in the evolution of polyandry, and polyandry is likely to be associated with male benefits. Polyandry in frogs can be explained either by forced mating as a result of sexual conflict or by clutch piracy. By modifying intrasexual competition, asynchronous arrival and changes in OSR may have a decisive influence upon the evolution of mating systems and favour both polyandry and stable coexistence of alternative mating behaviour.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 191–200.  相似文献   

12.
Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species.  相似文献   

13.
Safer sex with feeding females: sexual conflict in a cannibalistic spider   总被引:8,自引:2,他引:6  
Mating strategies are to a large degree shaped by conflictsbetween the sexes, causing a rapid antagonistic coevolutionof traits involved in reproduction. The view that sexual cannibalismrepresents a form of sexual conflict leads to the predictionof male traits that facilitate escape from cannibalistic females.A variety of traits have been suggested to serve this functionin spiders, where sexual cannibalism is comparatively common.Empirical evidence, however, is virtually absent. Here we showexperimentally that opportunistic mating with feeding females,which has been reported from several species of orb-weavingspiders, greatly reduces the risk of cannibalism and injuryfor males in the spider Nephila fenestrata. This has directconsequences for a male's fertilization success because survivingmales can reduce the female's remating probability by guardingher against rivals. Although copulation with previously matedfemales sometimes appears to be mechanically impossible, secondmales that do copulate can expect to fertilize on average 64%of a female's eggs. Our results support the view that opportunisticmating may have evolved as a male tactic in a context of sexualconflict over sexual cannibalism.  相似文献   

14.
In many non-monogamous systems, males invest less in progeny than do females. This leaves males with higher potential rates of reproduction, and a likelihood of sexual conflict, including, in some systems, coercive matings. If coercive matings are costly, the best female strategy may be to avoid male interaction. We present a model that demonstrates female movement in response to male harassment as a mechanism to lower the costs associated with male coercion, and the effect that female movement has on selection in males for male harassment. We found that, when females can move from a habitat patch to a refuge to which males do not have access, there may be a selection for either high, or low harassment male phenotype, or both, depending on the relationship between the harassment level of male types in the population and a threshold level of male harassment. This threshold harassment level depends on the relative number of males and females in the population, and the relative resource values of the habitat; the threshold increases as the sex ratio favours females, and decreases with the value of the refuge patch or total population. Our model predicts that selection will favour the harassment level that lies closest to this threshold level of harassment, and differing harassment levels will coexist within the population only if they lie on the opposite sides of the threshold harassment. Our model is consistent with empirical results suggesting that an intermediate harassment level provides maximum reproductive fitness to males when females are mobile.  相似文献   

15.
Coelopids live in wrack beds consisting of seaweed washed up on beaches. Their mating system is characterized by sexual conflict and convenience polyandry, with females resisting male mating attempts. We estimated the level of harassment by males and the success rate of rejection by females collected from a high density wild population. Males mounted a female every 8.41 min. Of these mounts 35% resulted in copulation. This suggests that females could be mated up to 5 times every 2 h. Females typically live for 3 weeks, and thus, could mate with hundreds of males during their lifetime. We found a 50:50 sex ratio throughout the wrack bed revealing that females do not avoid male harassment by leaving the wrack bed when not ovipositing.  相似文献   

16.
Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus. We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father-daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.  相似文献   

17.
Females of the predatory mite Parasitus fimetorum (Gamasida; Parasitina) inhabiting animal manure indiscriminately copulate with many mates. The sperm competition between the males was estimated by electrophoresis of allozymes and the effects of multiple mating on female reproduction were investigated. When females were forced to mate only once, their fecundity decreased drastically compared to the case of multiple mating (but longevity was unaffected). When one female mated with two males, the outcome of sperm competition depended greatly upon the mating interval. When the second mating occurred immediately after the first, the female fecundity decreased as in the case of single mating and the second male fertilized only a few eggs. However, when there was an interval of 1 day between the two matings, the females achieved normal fecundity and the second male fertilized approximately half the eggs. This suggests that the spermatophore deposited by the first male may act as a short-term copulatory plug in the female's genital opening. When one female mated with several males with 1 day intervals, three or more males shared fertilization of the eggs. This study suggests that the multiple mating of females is a necessary stimulus to continue oogenesis and some physiological factors for this stimulation may exist in spermatophores.  相似文献   

18.
19.
Female Drosophila melanogaster frequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide, SP) to determine whether she had recently mated. We sampled females throughout the day, conducted control matings to determine the decay rate of SP within the female reproductive tract and performed computer simulations to fit the observed proportion of mated females to a nonhomogenous Poisson process that defined the expected time between successive matings for a given female. In our control matings, 100% of mated females tested positive for SP 0.5 h after the start of mating (ASM), but only 24% tested positive 24 h ASM. Overall, 35% of wild‐caught females tested positive for the presence of SP. Fitting our observed data to our simple nonhomogenous Poisson model provided the inference that females are mating, on average, approximately every 27 h (with 95% credibility interval 23–31 h). Thus, it appears that females are mating a bit less frequently that once per day in this natural population and that mating events tend to occur either early in the morning or late in the afternoon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号