共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between host sex and age of exposure modify the virulence–transmission trade‐off 下载免费PDF全文
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations. 相似文献
2.
Stephen A. Y. Gipson Matthew D. Hall 《Evolution; international journal of organic evolution》2016,70(5):959-968
Sex and infection are intimately linked. Many diseases are spread by sexual contact, males are thought to evolve exaggerated sexual signals to demonstrate their immune robustness, and pathogens have been shown to direct the evolution of recombination. In all of these examples, infection is influencing the evolution of male and female fitness, but less is known about how sex differences influence pathogen fitness. A defining characteristic of sexual dimorphism is not only divergent phenotypes, but also a complex genetic architecture involving changes in genetic correlations among shared fitness traits, and differences in the accumulation of mutations—all of which may affect selection on an invading pathogen. Here, we outline the implications that the genetics of sexual dimorphism can have for host–pathogen coevolution and argue that male–female differences influence more than just the environment that a pathogen experiences. 相似文献
3.
Hanna Susi Anna‐Liisa Laine 《Evolution; international journal of organic evolution》2013,67(11):3362-3370
Trade‐offs in life‐history traits is a central tenet in evolutionary biology, yet their ubiquity and relevance to realized fitness in natural populations remains questioned. Trade‐offs in pathogens are of particular interest because they may constrain the evolution and epidemiology of diseases. Here, we studied life‐history traits determining transmission in the obligate fungal pathogen, Podosphaera plantaginis, infecting Plantago lanceolata. We find that although traits are positively associated on sympatric host genotypes, on allopatric host genotypes relationships between infectivity and subsequent transmission traits change shape, becoming even negative. The epidemiological prediction of this change in life‐history relationships in allopatry is lower disease prevalence in newly established pathogen populations. An analysis of the natural pathogen metapopulation confirms that disease prevalence is lower in newly established pathogen populations and they are more prone to go extinct during winter than older pathogen populations. Hence, life‐history trade‐offs mediated by pathogen local adaptation may influence epidemiological dynamics at both population and metapopulation levels. 相似文献
4.
Genome‐wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird 下载免费PDF全文
Marius A. Wenzel Marianne C. James Alex Douglas Stuart B. Piertney 《Molecular ecology》2015,24(16):4175-4192
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco‐evolutionary processes in natural populations. Host–parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade‐offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome‐wide SNPs. We first use genome‐wide association to identify individual SNPs associated with nematode burden. We then partition genome‐wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome‐wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large‐effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic). 相似文献
5.
M. VILA M. A. AUGER‐ROZENBERG F. GOUSSARD C. LOPEZ‐VAAMONDE 《Ecological Entomology》2009,34(3):356-362
Abstract 1. Non‐lethal genetic surveys in insects usually extract DNA from a leg or a piece of wing. Although preferable to lethal sampling, little is known about the effect of leg/wing non‐lethal sampling on fitness‐related traits. 2. Graellsia isabelae (Graells, 1849) is a European moth protected by the Habitats Directive and the Bern Convention. Conservation genetics surveys on this species should therefore use non‐lethal sampling. 3. The present study aimed to (1) quantify the effects of both leg and hind‐wing tail sampling on survivorship and reproductive behaviour of adult males and females, and (2) assess the quality and quantity of DNA obtained from those tissues. 4. Both hind‐wing tails and mid‐legs proved to be good sources of high quality nuclear and mitochondrial DNA. DNA concentration was significantly higher when extracted from a large (130 mm2) piece of the hind‐wing tails than from about half of the mid‐leg. Using mark–release–recapture experiments with adults, it was found that neither mid‐leg nor hind‐wing tail sampling significantly reduced male survivorship or total number of matings. However, although mid‐leg sampling did not significantly affect female survivorship, it had a negative effect on female mating success. 5. Wing‐tail clipping on males appeared to be the best non‐lethal sampling procedure for G. isabelae. It is a fast procedure, similar to natural wing impairment, and did not significantly affect survival or mating behaviour. 相似文献
6.
Antagonistic pleiotropy in species with separate sexes,and the maintenance of genetic variation in life‐history traits and fitness 下载免费PDF全文
Felix Zajitschek Tim Connallon 《Evolution; international journal of organic evolution》2018,72(6):1306-1316
Antagonistic pleiotropy (AP)—where alleles of a gene increase some components of fitness at a cost to others—can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex‐specific phenotypic selection estimates—many of which are based on single fitness components. 相似文献
7.
N. FRANCESCHI L. BOLLACHE S. CORNET A. BAUER S. MOTREUIL T. RIGAUD 《Journal of evolutionary biology》2010,23(10):2143-2150
Pomphorhynchus laevis, a fish acanthocephalan parasite, manipulates the behaviour of its gammarid intermediate host to increase its trophic transmission to the definitive host. However, the intensity of behavioural manipulation is variable between individual gammarids and between parasite populations. To elucidate causes of this variability, we compared the level of phototaxis alteration induced by different parasite sibships from one population, using experimental infections of Gammarus pulex by P. laevis. We used a naive gammarid population, and we carried out our experiments in two steps, during spring and winter. Moreover, we also investigated co‐variation between phototaxis (at different stages of infection, ‘young’ and ‘old cystacanth stage’) and two other fitness‐related traits, infectivity and development time. Three main parameters could explain the parasite intra‐population variation in behavioural manipulation. The genetic variation, suggested by the differences between parasite families, was lower than the variation owing to an (unidentified) environmental factor. Moreover, a correlation was found between development rate and the intensity of behavioural change, the fastest growing parasites being unable to induce rapid phototaxis reversal. This suggests that parasites cannot optimize at the same time these two important parameters of their fitness, and this could explain a part of the variation observed in the wild. 相似文献
8.
- 1 The behaviour of predators can be an important factor in the transmission success of an insect pathogen. We studied how Calosoma sycophanta influences the interaction between its prey [Lymantria dispar (L.) (Lepidoptera, Lymantriidae)] and two microsporidian pathogens [Nosema lymantriae (Microsporidia, Nosematidae) and Vairimorpha disparis (Microsporidia, Burellenidae)] infecting the prey.
- 2 Using laboratory experiments, C. sycophanta was allowed to forage on infected and uninfected L. dispar larvae and to disseminate microsporidian spores when preying or afterwards with faeces.
- 3 The beetle disseminated spores of N. lymantriae and V. disparis when preying upon infected larvae, as well as after feeding on such prey. Between 45% and 69% of test larvae became infected when C. sycophanta was allowed to disseminate spores of either microsporidium.
- 4 Laboratory choice experiments showed that C. sycophanta did not discriminate between Nosema‐infected and uninfected gypsy moth larvae. Calosoma sycophanta preferred Vairimorpha‐infected over uninfected gypsy moth larvae and significantly influenced transmission.
- 5 When C. sycophanta was allowed to forage during the latent period on infected and uninfected larvae reared together on caged, potted oak saplings, the percentage of V. disparis infection among test larvae increased by more than 70%. The transmission of N. lymantriae was not affected significantly in these experiments.
- 6 Beetles never became infected with either microsporidian species after feeding on infected prey.
- 7 We conclude that the transmission of N. lymantriae is not affected. Because no V. disparis spores are released from living larvae, feeding on infected larvae might enhance transmission by reducing the time to death and therefore the latent period.
9.
Gabriela Montejo‐Kovacevich Jennifer E. Smith Joana I. Meier Caroline N. Bacquet Eva Whiltshire‐Romero Nicola J. Nadeau Chris D. Jiggins 《Evolution; international journal of organic evolution》2019,73(12):2436-2450
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal‐mating clade are smaller than those in the adult‐mating clade. Interestingly, we find that high‐altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high‐altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration. 相似文献
10.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system. 相似文献
11.
A large‐scale latitudinal pattern of life‐history traits in a strictly univoltine damselfly 下载免费PDF全文
1. Variation in thermal conditions and season length along latitudinal gradients affect body size‐related traits over different life stages. Selection is expected to optimise these size traits in response to the costs and benefits. 2. Egg, hatchling, larval and adult size in males and females were estimated along a latitudinal gradient of 2730 km across Europe in the univoltine damselfly Lestes sponsa, using a combination of field‐collection and laboratory‐rearing experiments. In the laboratory, individuals were grown in temperatures and photoperiod simulating those at the latitude of origin, and in common‐garden conditions. 3. The size of adults sampled in nature was negatively correlated with latitude. In all populations the females were larger than the males. Results from simulated and common‐garden rearing experiments supported this pattern of size difference across latitudes and between sexes, suggesting a genetic component for the latitudinal size trend and female‐biased size dimorphism. In contrast, hatchling size showed a positive relationship with latitude, but egg size, although differing between latitudes, showed no such relationship. 4. The results support a converse Bergmann cline, i.e. a negative body size cline towards the north. This negative cline in body size is probably driven by progressively stronger seasonal time and temperature constraints towards the higher latitudes and by the obligate univoltine life cycle of L. sponsa. As egg size showed no relationship with latitude, other environmental factors besides temperature, such as desiccation risk, probably affect this trait. 相似文献
12.
Immune deployment increases larval vulnerability to predators and inhibits adult life‐history traits in a dragonfly 下载免费PDF全文
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages. 相似文献
13.
Ross Corriden Tim Self Kathryn Akong‐Moore Victor Nizet Barrie Kellam Stephen J Briddon Stephen J Hill 《EMBO reports》2013,14(8):726-732
The A3‐adenosine receptor (A3AR) has recently emerged as a key regulator of neutrophil behaviour. Using a fluorescent A3AR ligand, we show that A3ARs aggregate in highly polarized immunomodulatory microdomains on human neutrophil membranes. In addition to regulating chemotaxis, A3ARs promote the formation of filipodia‐like projections (cytonemes) that can extend up to 100 μm to tether and ‘reel in’ pathogens. Exposure to bacteria or an A3AR agonist stimulates the formation of these projections and bacterial phagocytosis, whereas an A3AR‐selective antagonist inhibits cytoneme formation. Our results shed new light on the behaviour of neutrophils and identify the A3AR as a potential target for modulating their function. 相似文献
14.
1. It was determined if the predatory midge Corethrella appendiculata Grabham imposes a fitness cost in a native mosquito, Ochlerotatus triseriatus Say, and an invasive mosquito, Aedes albopictus Skuse. The hypothesis that decreased activity of immature prey in the presence of predator cues is associated with life history costs through all life cycle stages was tested. 2. In experiment 1, individual larvae of O. triseriatus or A. albopictus were raised in the presence or absence of predation cues at two resource levels. Prey were video recorded to detect behavioural responses and to measure development time, size at emergence, and adult longevity. In experiment 2, prey populations were reared in similar environments and the frequency of predator cue additions was varied. 3. Only O. triseriatus reduced its activity in the presence of predation cues. Predation cues were associated with longer immature development times and shorter adult life spans in O. triseriatus, whereas in A. albopictus, the cues were associated with a larger size of emerging adults. 4. In the present study, it was found that behavioural modifications during the larval stage can affect mosquitoes through multiple stages of their complex life cycle. The species‐specific behavioural differences are probably attributable to the longer evolutionary history O. triseriatus has with predators, relative to the invasive A. albopictus. 相似文献
15.
Every host is colonized by a variety of microbes, some of which can protect their hosts from pathogen infection. However, pathogen presence naturally varies over time in nature, such as in the case of seasonal epidemics. We experimentally coevolved populations of Caenorhabditis elegans worm hosts with bacteria possessing protective traits (Enterococcus faecalis), in treatments varying the infection frequency with pathogenic Staphylococcus aureus every host generation, alternating host generations, every fifth host generation, or never. We additionally investigated the effect of initial pathogen presence at the formation of the defensive symbiosis. Our results show that enhanced microbe‐mediated protection evolved during host‐protective microbe coevolution when faced with rare infections by a pathogen. Initial pathogen presence had no effect on the evolutionary outcome of microbe‐mediated protection. We also found that protection was only effective at preventing mortality during the time of pathogen infection. Overall, our results suggest that resident microbes can be a form of transgenerational immunity against rare pathogen infection. 相似文献
16.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages. 相似文献
17.
Cross‐sex genetic correlations and the evolution of sex‐specific local adaptation: Insights from classical trait clines in Drosophila melanogaster 下载免费PDF全文
Clémentine Lasne Sandra B. Hangartner Carla M. Sgrò 《Evolution; international journal of organic evolution》2018,72(6):1317-1327
Natural selection varies widely among locations of a species’ range, favoring population divergence and adaptation to local environmental conditions. Selection also differs between females and males, favoring the evolution of sexual dimorphism. Both forms of within‐species evolutionary diversification are widely studied, though largely in isolation, and it remains unclear whether environmental variability typically generates similar or distinct patterns of selection on each sex. Studies of sex‐specific local adaptation are also challenging because they must account for genetic correlations between female and male traits, which may lead to correlated patterns of trait divergence between sexes, whether or not local selection patterns are aligned or differ between the sexes. We quantified sex‐specific divergence in five clinally variable traits in Drosophila melanogaster that individually vary in their magnitude of cross‐sex genetic correlation (i.e., from moderate to strongly positive). In all five traits, we observed parallel male and female clines, regardless of the magnitude of their genetic correlation. These patterns imply that parallel spatial divergence of female and male traits is a reflection of sexually concordant directional selection imposed by local environmental conditions. In such contexts, genetic correlations between the sexes promote, rather than constrain, local adaptation to a spatially variable environment. 相似文献
18.
Effects of the demographic transition on the genetic variances and covariances of human life‐history traits 下载免费PDF全文
Elisabeth Bolund Adam Hayward Jenni E. Pettay Virpi Lummaa 《Evolution; international journal of organic evolution》2015,69(3):747-755
The recent demographic transitions to lower mortality and fertility rates in most human societies have led to changes and even quick reversals in phenotypic selection pressures. This can only result in evolutionary change if the affected traits are heritable, but changes in environmental conditions may also lead to subsequent changes in the genetic variance and covariance (the G matrix) of traits. It currently remains unclear if there have been concomitant changes in the G matrix of life‐history traits following the demographic transition. Using 300 years of genealogical data from Finland, we found that four key life‐history traits were heritable both before and after the demographic transition. The estimated heritabilities allow a quantifiable genetic response to selection during both time periods, thus facilitating continued evolutionary change. Further, the G matrices remained largely stable but revealed a trend for an increased additive genetic variance and thus evolutionary potential of the population after the transition. Our results demonstrate the validity of predictions of evolutionary change in human populations even after the recent dramatic environmental change, and facilitate predictions of how our biology interacts with changing environments, with implications for global public health and demography. 相似文献
19.
Lily M. Thompson Kristine L. Grayson Derek M. Johnson 《Entomologia Experimentalis et Applicata》2016,158(3):295-303
Habitat type, fragmentation, and edge effects can play important roles in the mate‐finding abilities of many species. These effects can be particularly pronounced in low‐density populations, which are often found at the margins of species' ranges or at the leading edge of an invasion. The European gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is a non‐native insect defoliator in the USA and Canada, where flightless females attract male moths through pheromone production and local extirpation of low‐density populations can be due to mate‐finding failure. To assess the effects of habitat edges on the ability of gypsy moths to find mates, we conducted a release experiment with male gypsy moths using female‐baited trap arrays in fields, at forest edges, and in the forest interior. Reduced mate‐finding was expected in fields and near forest edges based on geographic variation in invasion rates, male flight behavior, and pheromone plume dynamics. However, we found that mate‐finding was highest at forest edges, reduced in fields, and lowest within the forest interior. Within an array, traps closest to the forest edge also had the highest mate‐finding, suggesting that habitat characteristics can influence male flight direction in addition to pheromone cues. These results suggest that a moderate level of forest fragmentation enhances mate‐finding ability in the gypsy moth. Understanding the relationship between habitat heterogeneity and mate‐finding success in invasive species can inform predictions of future spread and assist with management plans that target mating disruption. 相似文献
20.
Geographic variation of life‐history traits in the sand lizard,Lacerta agilis: testing Darwin's fecundity‐advantage hypothesis 下载免费PDF全文
E. S. Roitberg G. V. Eplanova T. I. Kotenko F. Amat M. A. Carretero V. N. Kuranova N. A. Bulakhova O. I. Zinenko V. A. Yakovlev 《Journal of evolutionary biology》2015,28(3):613-629
The fecundity‐advantage hypothesis (FAH) explains larger female size relative to male size as a correlated response to fecundity selection. We explored FAH by investigating geographic variation in female reproductive output and its relation to sexual size dimorphism (SSD) in Lacerta agilis, an oviparous lizard occupying a major part of temperate Eurasia. We analysed how sex‐specific body size and SSD are associated with two putative indicators of fecundity selection intensity (clutch size and the slope of the clutch size–female size relationship) and with two climatic variables throughout the species range and across two widespread evolutionary lineages. Variation within the lineages provides no support for FAH. In contrast, the divergence between the lineages is in line with FAH: the lineage with consistently female‐biased SSD (L. a. agilis) exhibits higher clutch size and steeper fecundity slope than the lineage with an inconsistent and variable SSD (L. a. exigua). L. a. agilis shows lower offspring size (egg mass, hatchling mass) and higher clutch mass relative to female mass than L. a. exigua, that is both possible ways to enhance offspring number are exerted. As the SSD difference is due to male size (smaller males in L. a. agilis), fecundity selection favouring larger females, together with viability selection for smaller size in both sexes, would explain the female‐biased SSD and reproductive characteristics of L. a. agilis. The pattern of intraspecific life‐history divergence in L. agilis is strikingly similar to that between oviparous and viviparous populations of a related species Zootoca vivipara. Evolutionary implications of this parallelism are discussed. 相似文献