首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The adaptability of organisms to novel environmental conditions depends on the amount of genetic variance present in the population as well as on the ability of individuals to adjust their phenotype through phenotypic plasticity. Here, we investigated the phenotypic plasticity induced by a single generation's exposure to three different temperature regimes with respect to several life‐history and stress‐resistance traits in a natural population of Drosophila simulans. We studied a constant as well as a predictably and an unpredictably fluctuating temperature regime. We found high levels of phenotypic plasticity among all temperature regimes, suggesting a strong influence of both temperature fluctuations and their predictability. Increased heat tolerance was observed for flies developed in both types of fluctuating thermal environments compared with flies developed in a constant environment. We suggest that this was due to beneficial hardening when developing in either fluctuating temperature environment. To our surprise, flies that developed in constant and predictably changing environments were similar to each other in most traits when compared to flies from the unpredictably fluctuating environment. The unpredictably changing thermal environment imposed the most stressful condition, resulting in the lowest performance for stress‐related traits, even though the absolute temperature changes never exceeded that of the predictably fluctuating environment. The overall decreased stress resistance of flies in the unpredictably fluctuating environment may be the consequence of maladaptive phenotypic plasticity in this setting, indicating that the adaptive value of plasticity depends on the predictability of the environment.  相似文献   

2.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

3.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

4.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

5.
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.  相似文献   

6.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

7.
The evolution of phenotypic plasticity of plant traits may be constrained by costs and limits. However, the precise constraints are still unclear for many traits under different ecological contexts. In a glasshouse experiment, we grew ramets of 12 genotypes of a clonal plant Hydrocotyle vulgaris under the control (full light and no flood), shade and flood conditions and tested the potential costs and limits of plasticity in 13 morphological and physiological traits in response to light availability and flood variation. In particular, we used multiple regression and correlation analyses to evaluate potential plasticity costs, developmental instability costs and developmental range limits of each trait. We detected significant costs of plasticity in specific petiole length and specific leaf area in response to shade under the full light condition and developmental range limits in specific internode length and intercellular CO2 concentration in response to light availability variation. However, we did not observe significant costs or limits of plasticity in any of the 13 traits in response to flood variation. Our results suggest that the evolution of phenotypic plasticity in plant traits can be constrained by costs and limits, but such constraints may be infrequent and differ under different environmental contexts.  相似文献   

8.
Costs and limits are assumed to be the major constraints on the evolution of phenotypic plasticity. However, despite their expected importance, they have been surprisingly hard to find in natural populations. It has therefore been argued that natural selection might have removed high-cost genotypes in all populations. However, if costs of plasticity are linked to the degree of plasticity expressed, then high costs of plasticity would only be present in populations where increased plasticity is under selection. We tested this hypothesis by investigating costs and limits of adaptive phenotypic plasticity in development time in a common garden study of island populations of the common frog Rana temporaria , which have varying levels of development time and phenotypic plasticity. Costs of plasticity were only found in populations with high-plastic genotypes, whereas the populations with the most canalized genotypes instead had a cost of canalization. Moreover, individuals displaying the most extreme phenotypes also were the most plastic ones, which mean we found no limits of plasticity. This suggests that costs of plasticity increase with increased level of plasticity in the populations, and therefore costs of plasticity might be more commonly found in high-plastic populations.  相似文献   

9.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

10.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

11.
The evolution of perfect adaptive phenotypic plasticity of a given trait may be influenced by, among other things, phenotypic costs associated with the expression of a given trait value, relative to alternative trait values. One potential cause of such phenotypic costs is the allocation of limited resources to multiple traits. When multiple traits rely on the same resource, trait values for one adaptively plastic trait might be unavoidably associated with maladaptive trait values for other traits. I address this problem in three traits of Pieris rapae L. (the small cabbage white butterfly) that all rely on the pigment melanin and are adaptively plastic, but have very different functions: wing pattern, immune defense, and pupal color. Cool, short-day rearing conditions simultaneously increased total wing melanization and decreased a melanin-based immune response in females, consistent with predictions. However, cool, short days also reduced the melanin-based immune response in males, despite little effect on male wing melanization. Furthermore, contrary to predictions, these patterns were not altered by differences in dietary resources. Finally, dark-colored rearing backgrounds during pupation substantially increased pupal melanization in both sexes, but was not associated with differences in wing melanization. These results offer only mixed support for the hypothesis of melanin-based trade offs as a source of phenotypic costs to adaptive plasticity in these traits. However, patterns of sexual dimorphism for these traits suggest trade offs might be at work at another level: relative to males, females have consistently more heavily melanized wings but less heavily melanized pupae and immune responses. The reduced immune response under cool, short-day conditions may also have implications for the evolutionary ecology of these butterflies.  相似文献   

12.
Incubation temperatures profoundly affect many phenotypic traits of squamate reptiles, and mean selected body temperatures of such animals also are plastic in response to environmental factors. Plausibly, then, incubation temperatures might affect hatchling thermoregulation, either via adaptation (i.e., populations that historically experience different nest conditions, also will diverge in hatchling thermoregulatory behaviour) or phenotypic plasticity (incubation temperatures directly modify hatchling behaviours). We tested this hypothesis with a montane scincid lizard (Bassiana duperreyi), using thermal-imaging methods to quantify temperatures (of both head and body) selected by hatchling lizards. The young lizards kept their heads cooler than their bodies, but mean selected temperatures did not differ among hatchlings from three populations with differing thermal regimes in natural nests, nor were they affected by thermal conditions during incubation. The conservatism of mean selected temperatures stands in strong contrast to the lability of many other phenotypic traits in response to incubation temperatures in this species.  相似文献   

13.
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.  相似文献   

14.
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.  相似文献   

15.
Plant populations may show differentiation in phenotypic plasticity, and theory predicts that greater levels of environmental heterogeneity should select for higher magnitudes of phenotypic plasticity. We evaluated phenotypic responses to reduced soil moisture in plants of Convolvulus chilensis grown in a greenhouse from seeds collected in three natural populations that differ in environmental heterogeneity (precipitation regime). Among several morphological and ecophysiological traits evaluated, only four traits showed differentiation among populations in plasticity to soil moisture: leaf area, leaf shape, leaf area ratio (LAR), and foliar trichome density. In all of these traits plasticity to drought was greatest in plants from the population with the highest interannual variation in precipitation. We further tested the adaptive nature of these plastic responses by evaluating the relationship between phenotypic traits and total biomass, as a proxy for plant fitness, in the low water environment. Foliar trichome density appears to be the only trait that shows adaptive patterns of plasticity to drought. Plants from populations showing plasticity had higher trichome density when growing in soils with reduced moisture, and foliar trichome density was positively associated with total biomass. Co-ordinating editor: F. Stuefer  相似文献   

16.
Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait‐specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory‐adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species‐specific plasticity.  相似文献   

17.
Potential constraints on the evolution of phenotypic plasticity were tested using data from a previous study on predator-induced morphology and life history in the freshwater snail Physa heterostropha. The benefit of plasticity can be reduced if facultative development is associated with energetic costs, developmental instability, or an impaired developmental range. I examined plasticity in two traits for 29 families of P. heterostropha to see if it was associated with growth rate or fecundity, within-family phenotypic variance, or the potential to produce extreme phenotypes. Support was found for only one of the potential constraints. There was a strong negative selection gradient for growth rate associated with plasticity in shell shape (β = ?0.3, P < 0.0001). This result was attributed to a genetic correlation between morphological plasticity and an antipredator behavior that restricts feeding. Thus, reduced growth associated with morphological plasticity may have had unmeasured fitness benefits. The growth reduction, therefore, is equivocal as a cost of plasticity. Using different fitness components (e.g., survival, fecundity, growth) to seek constraints on plasticity will yield different results in selection gradient analyses. Procedural and conceptual issues related to tests for costs and limits of plasticity are discussed, such as whether constraints on plasticity will be evolutionarily ephemeral and difficult to detect in nature.  相似文献   

18.
Light intensity and heterogeneity are some of the main environmental factors that differ between forest and savanna habitats, and plant species from these habitats form distinct functional types. In this study, we tested the hypothesis that not only differences in morphological and physiological traits but also phenotypic plasticity in response to light are involved in adaptation to forest and savanna habitats by investigating ecotypic differentiation between populations of Plathymenia reticulata (Leguminosae: Mimosoideae), a tree from the Brazilian Atlantic Forest and the Brazilian Cerrado (savanna). Seeds from four natural populations (one from each biome core area and two from ecotonal regions) were grown in a common garden with four light treatments. Fifteen morphological and physiological characteristics were evaluated until individuals reached 6 mo old. Comparisons among populations showed differences for seven traits in at least one light treatment. These differences pointed to local adaptation to different biomes. Populations showed different levels of phenotypic plasticity in response to light in seven traits. Higher plasticity was found either in the forest core population or ecotonal populations; lower values were found in the cerrado core population. Lower plasticity in the cerrado population emphasizes the stress resistant syndrome, as lower plasticity is probably advantageous in a habitat where a conservative resource use is crucial. Higher plasticity in forest individuals suggests higher ability in exploiting the light heterogeneity in this habitat. Also, higher plasticity in ecotonal populations can be important to ensure the maintenance of P. reticulata in these temporally and spatially dynamic areas. Abstract in Portugese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

19.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

20.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号