首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the consequences of landscape features on population genetic patterns is increasingly important to elucidate the ecological factors governing connectivity between populations and predicting the evolutionary consequences of landscapes. Small prairie lakes in Alberta, Canada, and the brook stickleback (Culaea inconstans) that inhabit them, provide a unique aquatic system whereby populations are highly isolated from one another. These heterogeneous and extreme environments are prone to winterkills, an event whereby most of the fish die and frequent bottlenecks occur. In this study, we characterized the genetic population structure of brook stickleback among several lakes, finding that the species is hierarchically influenced by within‐lake characteristics in small‐scale watersheds. Landscape genetic analyses of the role of spatial features found support for basin characteristics associated with genetic diversity and bottlenecks in 20% of the sampled lakes. These results suggest that brook stickleback population genetic patterns may be driven, at least in part, by ecological processes that accelerate genetic drift and landscape patterns associated with reduced dispersal. Collectively, these results reinforce the potential importance of connectivity in the maintenance of genetic diversity, especially in fragmented landscapes.  相似文献   

2.
3.
Achieving long‐term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat‐based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation‐by‐distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.  相似文献   

4.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

5.
Connectivity is central to ecology and evolution as it focuses on the movement of individuals or genes across landscapes. Genetic connectivity approaches aim to understand gene flow but often estimate it indirectly based on metrics of genetic differentiation, which can also be affected by other evolutionary forces such as genetic drift. Gene flow and genetic drift are driven by separate ecological mechanisms with potentially differing effects on genetic differentiation and interpretations of genetic connectivity. The ecological mechanisms contributing to gene flow and genetic drift are primarily effective dispersal, or movement followed by successful reproduction, and the number of breeders in a local population, Nb, respectively. Yet, rarely are these ecological mechanisms and genetic connectivity measured simultaneously across landscapes. We examine the roles of effective dispersal and Nb on genetic connectivity across the entire range of the endangered snail kite (Rostrhamus sociabilis plumbeus), between 2006–2015. We find that both Nb and effective dispersal are important predictors of genetic connectivity across this landscape, but that Nb has a 3 × stronger effect on genetic connectivity. Furthermore, Nb is positively correlated with heterozygosity and allelic richness within patches, suggesting a potentially important role of genetic drift, in addition to gene flow, on genetic connectivity. These results emphasize that conservation efforts should focus on not only between‐patch processes of movement but also within‐patch processes regarding habitat quality and local population size for increasing genetic connectivity.  相似文献   

6.
Habitat fragmentation is a major threat to the maintenance of genetic diversity in many plant populations. Genetic effects of population size have received far more attention than the effects of isolation—or connectivity—but both are key components of the fragmentation process. To analyze the consequences of fragment size and connectivity on the neutral genetic variation and population genetic structure of the dominant gypsophile Lepidium subulatum, we selected 20 fragments along two continuous gradients of size and degree of isolation in a fragmented gypsum landscape of Central Spain. We used eight polymorphic microsatellite markers, and analyzed a total of 344 individuals. Populations were characterized by high levels of genetic diversity and low inbreeding coefficients, which agrees with the mainly outcrossing system of L. subulatum and its high abundance in gypsum landscapes. Bayesian clustering methods, pairwise F ST values and analysis of molecular variance revealed low among-population differentiation, with no significant isolation by distance. However, several genetic diversity indices such as allelic richness, number of effective alleles, expected heterozygosity and number of private alleles were negatively related to population isolation. The higher genetic diversity found on more connected fragments suggests higher rates of gene flow among more connected populations. Overall, our results highlight that fragmentation can have important effects on intra-population genetic processes even for locally abundant, dominant species. This, together with previously documented effects of connectivity on fitness of gypsophile species highlights the importance of including habitat connectivity in management and conservation strategies of this type of semiarid systems.  相似文献   

7.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

8.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

9.
Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift.  相似文献   

10.
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge’s habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual‐based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full‐sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species.  相似文献   

11.
There are strong links between habitat fragmentation, population size and genetic structure. However, to fully understand the long‐term effects of fragmentation on population viability, it is necessary to first understand the relationship between life history traits and genetic characteristics in un‐fragmented habitats. This is best done through comparing patterns of genetic diversity in sympatric species, since relative data may be maximally informative. We compared genetic structure and diversity among three sympatric small mammals – of which two were marsupial species – over a small spatial scale (<4 km) using microsatellite genotypic data from individuals sampled from four grids spaced in a linear fashion. Expected heterozygosity was high for all three species (average He range: 0.781–0.886), but the smallest species had significantly higher genetic diversity (both heterozygosity and allelic diversity) than the two larger species, possibly due to it having; 1) large effective population size and little overlap in generations, and/or 2) high mutation rates in large alleles. Genotypic isolation by distance (measured as relatedness) was detected only at the smallest distance of 750 m, for any species. In the two marsupial species Fst, relatedness and percentage of individuals assigned to site of capture were significantly lower in males than in females, corroborating previous reports of male‐biased dispersal. However, sex‐biased dispersal was not detected for the third species (the native bush rat Rattus fuscipes), and presence of significant heterozygous deficits suggested this resulted in inbreeding within kin‐structured demes. We speculate that habitat fragmentation will have differing effects on population dynamics, social organisation and mating systems for the two marsupial species compared to the native murid rodent, due to their differing population structure and divergent inbreeding avoidance mechanisms.  相似文献   

12.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

13.
The impact of temporal changes in habitat availability and land use on the present genetic diversity of the grassland katydid species Metrioptera roeselii was investigated in an extensively used agricultural landscape (Lahn-Dill-Bergland, Germany) based on six microsatellite loci. By integrating spatial and temporal dimensions, this study contrasts to conventional approaches that usually record landscape changes at discrete points in time. Molecular data suggest little geographical substructuring of the species. Nevertheless, time-dependent effects on genetic diversity in terms of observed heterozygosity and allelic richness within subpopulations were detected by general linear models (GLM), explaining up to 82 and 13%, respectively. The results indicated that allelic richness was significantly reduced with higher rates of land-use change. Contrastingly, the level of heterozygosity even increased with increasing land-use change, if this rate increase was accompanied by a reduction in grassland amount, while with an increase of grassland amount the level of heterozygosity remained similar. Furthermore, depending on the study site, heterozygosity was differently affected by grassland age of sampled patches and of the surrounding. This is presumably induced by contrasting levels of heterozygosity in combination with differing modes of dispersal due to habitat availability and site-specific matrix effects. The loss of genetic diversity due to frequent land-use change might result in a reduced ability to adapt to landscape change, which is even more relevant in intensively used agricultural landscapes and in the course of climate change.  相似文献   

14.
The analysis of geographical patterns in population divergence has always been a powerful way to infer microevolutionary processes involved in population differentiation, and several approaches have been used to investigate such patterns. Most frequently, multivariate spatial patterns of population differentiation are analyzed by computing pairwise genetic distances or FST (or related statistics, such as ?ST from AMOVA), which are then correlated with geographical distances or landscape features. However, when calculating distances, especially based on presence-absence of alleles in local populations, there would be a confounding effect of allelic richness differences in the population differentiation. Moreover, the relative magnitude of these components and their spatial patterns can help identifying microevolutionary processes driving population differentiation. Here we show how recent methodological advances in ecological community analyses that allows partitioning dissimilarity into turnover (turnover) and richness differences, or nestedness-resultant dissimilarity, can be applied to allelic variation data, using an endemic Cerrado tree (Dipteryx alata) as a case study. Individuals from 15 local populations were genotyped for eight microsatellite loci, and pairwise dissimilarities were computed based on presence-absence of alleles. The turnover of alleles among populations represented 69?% of variation in dissimilarity, but only the richness difference component shows a clear spatial structure, appearing as a westward decrease of allelic richness. We show that decoupling richness difference and turnover components of allelic variation reveals more clearly how similarity among populations reflects geographical patterns in allelic diversity that can be interpreted in respect to historical range expansion in the species.  相似文献   

15.
Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’(much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south‐eastern Sweden (59°24’ N, 17°10’ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi‐natural grasslands, and grazed ex‐arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi‐natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi‐natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi‐natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present‐day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left.  相似文献   

16.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

17.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

18.
Understanding the environmental factors driving species‐genetic diversity correlations (SGDCs) is critical for designing appropriate conservation and management strategies to protect biodiversity. Yet, few studies have explored the impact of changing land use patterns on SGDCs specifically in aquatic communities. This study examined patterns of genetic diversity in roach (Rutilus rutilus L.) together with fish species composition across 19 locations in a large river catchment, spanning a gradient in land use. Our findings show significant correlations between some, but not all, species and genetic diversity end points. For example, genetic and species differentiation showed a weak but significant linear relationship across the Thames catchment, but additional diversity measures such as allelic richness and fish population abundance did not. Further examination of patterns in species and genetic diversity indicated that land use intensification has a modest effect on fish diversity compared to the combined influence of geographical isolation and land use intensification. These results indicate that environmental changes in riparian habitats have the potential to amplify shifts in the composition of stream fish communities in poorly connected river stretches. Conservation and management strategies for fish populations should, therefore, focus on enhancing connectivity between river stretches and limit conversion of nearby land to arable or urban use to maintain current levels of biodiversity.  相似文献   

19.
Interpreting patterns of population structure in nature is often challenging, especially in dynamic landscapes where population genetic connectivity evolves over time. In this study, we document the absence of migration-drift equilibrium in a stream-dwelling euryhaline fish resulting from past fine-scale drainage rearrangements and evaluate the relative contribution of past and current hydrological landscapes on observed population structure. Based on allelic variation at nine microsatellite loci, genetic relationships among 12 populations of brook charr, Salvelinus fontinalis, from Gros Morne National Park of Canada (GMNP, Newfoundland, Canada) did not reflect current stream hierarchical structure. In addition, we observed no correlation between population differentiation and contemporary landscape features (waterway distance and sums of altitudinal differences). Instead, population relationships were consistent with historical hydrological structure predicted a priori based on geomorphological and biogeographical evidences. Also, population differentiation was strongly correlated with inferred historical landscape features. Contemporary barriers have apparently preserved the signature of past genetic connectivity by constraining gene flow. Based on the relationships between population differentiation and current and past landscape features at various spatial scales, we suggest that brook charr genetic diversity in GMNP is mostly the result of small distance migrations at the time of colonization and subsequent differentiation through drift. This study highlights the potential of approaching landscapes from a combination of contemporary and historical perspectives when interpreting nonequilibrium population structures resulting from landscape rearrangement.  相似文献   

20.
Understanding what drives biodiversity patterns across scales is a central goal of ecology. Both environmental gradients and spatial landscape structure have been found to be important factors influencing species distributions and community composition, and partly reflect the balance of underlying deterministic and stochastic community processes. In some systems, environmental gradients and spatial connectivity are intertwined in that steep environmental gradients serve as boundaries on species movements and impose environment‐derived complex spatial structure to metacommunities. Mountainous landscapes are prime examples of this, and recent theory has linked principles of geomorphology, environmental gradients, and spatial structure to make predictions for resulting community patterns. In this context, we examine variation in taxonomic and phylogenetic ant diversity patterns along a geographic transect spanning > 5000 m in elevational range in the Hengduan mountains of southern China. We found that environmental gradients dominate variation in both alpha and beta diversity in this landscape, with alpha diversity strongly declining with elevation and beta diversity driven by elevational differences. However, within an elevational band spatial connectivity predicts beta diversity better than geographic distance. Our findings deviate from theoretical predictions in several ways, notably alpha diversity is monotonically declining and within‐band beta diversity is invariant with increasing elevation. The discrepancies between theory and observation may be explained by differences in the Hengduan landscape from idealized fluvial landscapes, such as a lack of a mid‐elevation peak in connectivity, as well as evolutionary limits on the source pool of species available to populate metacommunities at different elevations. The latter is supported by variation in phylogenetic community structure with elevation. Our results demonstrate the power of conceptual, statistical, and theoretical frameworks that integrate the roles of environment and spatial structure in metacommunities, but that additional work is needed to bridge the gap between abstract theory and real systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号