共查询到20条相似文献,搜索用时 0 毫秒
1.
Describing, understanding and predicting the spatial distribution of genetic diversity is a central issue in biological sciences. In river landscapes, it is generally predicted that neutral genetic diversity should increase downstream, but there have been few attempts to test and validate this assumption across taxonomic groups. Moreover, it is still unclear what are the evolutionary processes that may generate this apparent spatial pattern of diversity. Here, we quantitatively synthesized published results from diverse taxa living in river ecosystems, and we performed a meta‐analysis to show that a downstream increase in intraspecific genetic diversity (DIGD) actually constitutes a general spatial pattern of biodiversity that is repeatable across taxa. We further demonstrated that DIGD was stronger for strictly waterborne dispersing than for overland dispersing species. However, for a restricted data set focusing on fishes, there was no evidence that DIGD was related to particular species traits. We then searched for general processes underlying DIGD by simulating genetic data in dendritic‐like river systems. Simulations revealed that the three processes we considered (downstream‐biased dispersal, increase in habitat availability downstream and upstream‐directed colonization) might generate DIGD. Using random forest models, we identified from simulations a set of highly informative summary statistics allowing discriminating among the processes causing DIGD. Finally, combining these discriminant statistics and approximate Bayesian computations on a set of twelve empirical case studies, we hypothesized that DIGD were most likely due to the interaction of two of these three processes and that contrary to expectation, they were not solely caused by downstream‐biased dispersal. 相似文献
2.
Distribution margins constitute areas particularly prone to random and/or adaptive intraspecific differentiation in plants. This trend may be particularly marked in species discontinuously distributed across mountain ranges, where sharp geographic isolation gradients and habitat boundaries will enhance genetic isolation among populations. In this study, we analysed the level of neutral genetic differentiation among populations of the long-lived shrub Daphne laureola (Thymelaeaceae) across the Baetic Ranges, a glacial refugium and biodiversity hotspot in the western Mediterranean Basin. Within this area, core and marginal populations of D. laureola were compared with regard to their spatial isolation, size, genetic diversity and differentiation. A spatially explicit analysis conducted on the vast majority of the species' known populations in the study area (N = 111) showed that marginal populations (western and eastern) present larger spatial isolation than core populations, but are not smaller. We compared genetic diversity and differentiation between core and marginal populations using a subsample of 15 populations and 225 amplified fragment length polymorphism (AFLP) markers. Core and marginal populations did not differ in genetic diversity, probably because of the occurrence of large populations on the local margins. Western populations were strongly differentiated from the other populations. In addition, spatial and genetic differentiation among populations was larger on the western margin. Eastern populations constituted a genetically homogeneous group closely related to core populations, despite their greater spatial isolation. Results suggest that studies on phenotypic differentiation between core and marginal populations of D. laureola, and presumably other species having discontinuous distributions across the Baetic ranges, should take into account geographical differences in levels of genetic differentiation between the different distribution borders. 相似文献
3.
Brent E. Allman Daniel B. Weissman 《Evolution; international journal of organic evolution》2018,72(4):722-734
Selective sweeps reduce neutral genetic diversity. In sexual populations, this “hitchhiking” effect is thought to be limited to the local genomic region of the sweeping allele. While this is true in panmictic populations, we find that in spatially extended populations the combined effects of many unlinked sweeps can affect patterns of ancestry (and therefore neutral genetic diversity) across the whole genome. Even low rates of sweeps can be enough to skew the spatial locations of ancestors such that neutral mutations that occur in an individual living outside a small region in the center of the range have virtually no chance of fixing in the population. The fact that nearly all ancestry rapidly traces back to a small spatial region also means that relatedness between individuals falls off very slowly as a function of the spatial distance between them. 相似文献
4.
Joshua A. Thia 《Molecular ecology resources》2023,23(3):523-538
Despite the popularity of discriminant analysis of principal components (DAPC) for studying population structure, there has been little discussion of best practice for this method. In this work, I provide guidelines for standardizing the application of DAPC to genotype data sets. An often overlooked fact is that DAPC generates a model describing genetic differences among a set of populations defined by a researcher. Appropriate parameterization of this model is critical for obtaining biologically meaningful results. I show that the number of leading PC axes used as predictors of among-population differences, paxes, should not exceed the k−1 biologically informative PC axes that are expected for k effective populations in a genotype data set. This k−1 criterion for paxes specification is more appropriate compared to the widely used proportional variance criterion, which often results in a choice of paxes ≫ k−1. DAPC parameterized with no more than the leading k−1 PC axes: (i) is more parsimonious; (ii) captures maximal among-population variation on biologically relevant predictors; (iii) is less sensitive to unintended interpretations of population structure; and (iv) is more generally applicable to independent sample sets. Assessing model fit should be routine practice and aids interpretation of population structure. It is imperative that researchers articulate their study goals, that is, testing a priori expectations vs. studying de novo inferred populations, because this has implications on how their DAPC results should be interpreted. The discussion and practical recommendations in this work provide the molecular ecology community with a roadmap for using DAPC in population genetic investigations. 相似文献
5.
Secondary contact in close relatives can result in hybridization and the admixture of previously isolated gene pools. However, after an initial period of hybridization, reproductive isolation can evolve through different processes and lead to the interruption of gene flow and the completion of the speciation process. Omocestus minutissimus and O. uhagonii are two closely related grasshoppers with partially overlapping distributions in the Central System mountains of the Iberian Peninsula. To analyse spatial patterns of historical and/or contemporary hybridization between these two taxa and understand how species boundaries are maintained in the region of secondary contact, we sampled sympatric and allopatric populations of the two species and obtained genome‐wide single nucleotide polymorphism data using a restriction site‐associated DNA sequencing approach. We used Bayesian clustering analyses to test the hypothesis of contemporary hybridization in sympatric populations and employed a suite of phylogenomic approaches and a coalescent‐based simulation framework to evaluate alternative hypothetical scenarios of interspecific gene flow. Our analyses rejected the hypothesis of contemporary hybridization but revealed past introgression in the area where the distributions of the two species overlap. Overall, these results point to a scenario of historical gene flow after secondary contact followed by the evolution of reproductive isolation that currently prevents hybridization among sympatric populations. 相似文献
6.
Approximate Bayesian computation (ABC) is widely used to infer demographic history of populations and species using DNA markers. Genomic markers can now be developed for nonmodel species using reduced representation library (RRL) sequencing methods that select a fraction of the genome using targeted sequence capture or restriction enzymes (genotyping‐by‐sequencing, GBS). We explored the influence of marker number and length, knowledge of gametic phase, and tradeoffs between sample size and sequencing depth on the quality of demographic inferences performed with ABC. We focused on two‐population models of recent spatial expansion with varying numbers of unknown parameters. Performing ABC on simulated data sets with known parameter values, we found that the timing of a recent spatial expansion event could be precisely estimated in a three‐parameter model. Taking into account uncertainty in parameters such as initial population size and migration rate collectively decreased the precision of inferences dramatically. Phasing haplotypes did not improve results, regardless of sequence length. Numerous short sequences were as valuable as fewer, longer sequences, and performed best when a large sample size was sequenced at low individual depth, even when sequencing errors were added. ABC results were similar to results obtained with an alternative method based on the site frequency spectrum (SFS) when performed with unphased GBS‐type markers. We conclude that unphased GBS‐type data sets can be sufficient to precisely infer simple demographic models, and discuss possible improvements for the use of ABC with genomic data. 相似文献
7.
Dmitry A. Filatov 《Molecular ecology resources》2002,2(4):621-624
proseq is an integrated user‐friendly windows based program for convenient sequence editing and evolutionary analysis. It is designed to simplify preparation and analysis of DNA sequence data sets in population genetic, phylogenetic and molecular ecology studies. Sequence editor features include editing of chromatogram files, contig assembly, sequence alignment, translation and other utilities. Analysis features include calculation of genetic diversity, divergence, population subdivision and gene flow with permutation‐based significance testing and various tests of neutrality. A tool for coalescent simulations implements models with intragenic recombination, population subdivision and population growth. 相似文献
8.
物种共存机制是群落生态学研究的核心问题之一,但以成对物种间直接相互作用为主的传统共存理论,并未在实际群落中得到普遍证实。近年来,有研究表明,高阶相互作用,即一个物种对另一个物种的直接作用强度受到其他物种的间接影响,在群落竞争过程中的重要性不断得到发展。目前,对高阶相互作用的理论研究还主要集中在非空间理论模型。事实上,群落中个体的空间分布和扩散模式等对种群动态的影响均至关重要。故考虑空间因素,以三物种为例构建空间显式的群落动态模拟,通过引入不同的物种扩散模式,研究高阶相互作用对群落物种共存结果的影响。研究表明:(1)高阶相互作用可以促进也可能抑制物种共存,具体共存结果取决于高阶相互作用的方向、强度和分类;(2)当全部高阶相互作用都存在,且取值为正时,物种共存位置会发生偏移,原本生态位分化下共存的区域不再共存,而在生态位重叠度较高的区域,物种可以在更大范围的适合度差异下共存;(3)扩散模式对高阶相互作用的上述调节机制有一定的影响,且无论正高阶还是负高阶,当种群趋于局部扩散时,高阶相互作用的正向及负向调节效果均有所减弱。以上结论强调了在理论模型和实际保护工作中考虑相互作用网络的重要性,有助于进一步理解物种共存机制,能够为保护生物多样性提供理论依据。 相似文献
9.
We present a new approach for defining groups of populations that are geographically homogeneous and maximally differentiated from each other. As a by-product, it also leads to the identification of genetic barriers between these groups. The method is based on a simulated annealing procedure that aims to maximize the proportion of total genetic variance due to differences between groups of populations (spatial analysis of molecular variance; samova). Monte Carlo simulations were used to study the performance of our approach and, for comparison, the behaviour of the Monmonier algorithm, a procedure commonly used to identify zones of sharp genetic changes in a geographical area. Simulations showed that the samova algorithm indeed finds maximally differentiated groups, which do not always correspond to the simulated group structure in the presence of isolation by distance, especially when data from a single locus are available. In this case, the Monmonier algorithm seems slightly better at finding predefined genetic barriers, but can often lead to the definition of groups of populations not differentiated genetically. The samova algorithm was then applied to a set of European roe deer populations examined for their mitochondrial DNA (mtDNA) HVRI diversity. The inferred genetic structure seemed to confirm the hypothesis that some Italian populations were recently reintroduced from a Balkanic stock, as well as the differentiation of groups of populations possibly due to the postglacial recolonization of Europe or the action of a specific barrier to gene flow. 相似文献
10.
Microsatellite null alleles and estimation of population differentiation 总被引:20,自引:0,他引:20
Microsatellite null alleles are commonly encountered in population genetics studies, yet little is known about their impact on the estimation of population differentiation. Computer simulations based on the coalescent were used to investigate the evolutionary dynamics of null alleles, their impact on F(ST) and genetic distances, and the efficiency of estimators of null allele frequency. Further, we explored how the existing method for correcting genotype data for null alleles performed in estimating F(ST) and genetic distances, and we compared this method with a new method proposed here (for F(ST) only). Null alleles were likely to be encountered in populations with a large effective size, with an unusually high mutation rate in the flanking regions, and that have diverged from the population from which the cloned allele state was drawn and the primers designed. When populations were significantly differentiated, F(ST) and genetic distances were overestimated in the presence of null alleles. Frequency of null alleles was estimated precisely with the algorithm presented in Dempster et al. (1977). The conventional method for correcting genotype data for null alleles did not provide an accurate estimate of F(ST) and genetic distances. However, the use of the genetic distance of Cavalli-Sforza and Edwards (1967) corrected by the conventional method gave better estimates than those obtained without correction. F(ST) estimation from corrected genotype frequencies performed well when restricted to visible allele sizes. Both the proposed method and the traditional correction method have been implemented in a program that is available free of charge at http://www.montpellier.inra.fr/URLB/. We used 2 published microsatellite data sets based on original and redesigned pairs of primers to empirically confirm our simulation results. 相似文献
11.
Patrick G. Meirmans 《Molecular ecology resources》2020,20(4):1126-1131
genodive version 3.0 is a user‐friendly program for the analysis of population genetic data. This version presents a major update from the previous version and now offers a wide spectrum of different types of analyses. genodive has an intuitive graphical user interface that allows direct manipulation of the data through transformation, imputation of missing data, and exclusion and inclusion of individuals, population and/or loci. Furthermore, genodive seamlessly supports 15 different file formats for importing or exporting data from or to other programs. One major feature of genodive is that it supports both diploid and polyploid data, up to octaploidy (2n = 8x) for some analyses, but up to hexadecaploidy (2n = 16x) for other analyses. The different types of analyses offered by genodive include multiple statistics for estimating population differentiation (φST, FST, F?ST, GST, G?ST, G??ST, Dest, RST, ρ), analysis of molecular variance‐based K‐means clustering, Hardy–Weinberg equilibrium, hybrid index, population assignment, clone assignment, Mantel test, Spatial Autocorrelation, 23 ways of calculating genetic distances, and both principal components and principal coordinates analyses. A unique feature of genodive is that it can also open data sets with nongenetic variables, for example environmental data or geographical coordinates that can be included in the analysis. In addition, genodive makes it possible to run several external programs (lfmm , structure , instruct and vegan ) directly from its own user interface, avoiding the need for data reformatting and use of the command line. genodive is available for computers running Mac OS X 10.7 or higher and can be downloaded freely from: http://www.patrickmeirmans.com/software . 相似文献
12.
We used inter-simple sequence repeat fingerprinting to analyze the genetic structure of 16 populations of Stentor coeruleus from three lakes and three ponds in China. Using 14 polymorphic primers, a total of 99 discernible DNA fragments were detected, among which 76 (76.77%) were polymorphic, indicating median genetic diversity in these populations. Further, both Nei's gene diversity (h) and Shannon's information index (I) between the different populations revealed a median genetic diversity. At the same time, gene flow was interpreted to be low. The main factors responsible for the median level of diversity and low gene flow within populations are probably due to a low frequency of sexual recombinations. Analysis of molecular variance showed that there was high genetic differentiation among the five water bodies. Both cluster analysis and a nonmetric multidimensional scaling analysis suggested that genotypes isolated from the same locations displayed a higher genetic similarity than those from different ones, separating populations into subgroups according to their geographical locations. However, there is a weak positive correlation between the genetic distance and geographical distance. 相似文献
13.
多叶重楼遗传多样性的RAPD分析 总被引:11,自引:0,他引:11
应用RAPD技术检测了多叶重楼(Paris polyphyfzo)2个变种4个居群的遗传多样性,并与1个凌云重楼(P.cronquistii)居群进行了比较。选择的16个随机引物在5个居群中共检测到246个多态位点。在居群水平上,滇重楼2个居群的多态位点百分比(PP鳓分别为57.43%和54.67%,Shannon指数分别为0.3080和0.2830;七叶一枝花2个居群的PPB分别为56.33%和57.75%,Shannon指数分别为0、3080和0.3293。在变种水平上,滇重楼的PPB为75.14%,Shannon指数为0.3922,遗传分化系数(Gst)为0.3085;七叶一枝花的PPB为80.31%,Shannon指数为0.3992,遗传分化系数(Gst)为0.3726;在种的水平PPB达92.05%,遗传分化系数Gst达0.5151。聚类分析显示滇重楼和七叶一枝花有较近的亲缘关系,而与凌云重楼遗传距离较远。此结果从分子水平上支持了过去将滇重楼和七叶一枝花划分为1个种下2个变种的形态分类观点。 相似文献
14.
With the availability of whole-genome sequence data biologists are able to test hypotheses regarding the demography of populations. Furthermore, the advancement of the Approximate Bayesian Computation (ABC) methodology allows the demographic inference to be performed in a simple framework using summary statistics. We present here msABC, a coalescent-based software that facilitates the simulation of multi-locus data, suitable for an ABC analysis. msABC is based on Hudson's ms algorithm, which is used extensively for simulating neutral demographic histories of populations. The flexibility of the original algorithm has been extended so that sample size may vary among loci, missing data can be incorporated in simulations and calculations, and a multitude of summary statistics for single or multiple populations is generated. The source code of msABC is available at http://bio.lmu.de/~pavlidis/msabc or upon request from the authors. 相似文献
15.
R. Margis D. Felix J.F. Caldas F. Salgueiro D.S.D. De Araujo P. Breyne M. Van Montagu D. De Oliveira M. Margis-Pinheiro 《Biodiversity and Conservation》2002,11(1):149-163
Eugenia uniflora L. (pitanga) is widely distributed in tropical areas. It is present in coastal vegetation from Ceara, in northeastern Brazil, to Rio Grande do Sul, at the southern tip of the country. Eugenia uniflora is of ecological importance, both as colonizing species on disturbed land and as food supplier for a wide variety of insects, birds and mammals. Pitanga plays a role in the maintenance of shrubby coastal ecosystems, especially at disturbed sites, and in 'restinga' ecosystems, at the interface between low forest and strand vegetation. To investigate the genetic diversity residing within the species, three neighboring populations at a distance of less than 24 km from each other, with varying degrees of human impact, were studied. The level of genetic diversity within and between populations was assessed with amplified fragment length polymorphism (AFLP) methodology. A total of 532 AFLP markers were analyzed in 66 individual trees. The polymorphism level varied from 61.2 to 96% depending on the primer combination used. Intra- and inter-population genetic diversity analysis showed that more than 88% of the variation resided within the populations, with a Gst of 0.123. Nevertheless, using neighbor joining (NJ) and principal component analysis (PCA), on the genetic distance (GD) data, permitted the three analyzed populations to be differentiated. 相似文献
16.
《Animal : an international journal of animal bioscience》2020,14(12):2452-2462
Understanding existing levels of genetic variability of camel populations is capital for conservation activities. This study aims to provide information on the genetic diversity of four dromedary populations, including Guerzni, Harcha, Khouari and Marmouri. Blood samples from 227 individuals belonging to the aforementioned populations were obtained and genotyped by 16 microsatellite markers. A total of 215 alleles were observed, with the mean number of alleles per locus being 13.4 ± 6.26. All loci were polymorphic in the studied populations. The average expected heterozygosity varied from a maximum of 0.748 ± 0.122 in Guerzni population to a minimum of 0.702 ± 0.128 in Harcha population; Guerzni population showed the highest value of observed heterozygosity (0.699 ± 0.088), whereas Harcha population the lowest (0.646 ± 0.130). Mean estimates of F-statistics obtained over loci were FIS = 0.0726, FIT = 0.0876 and FST = 0.0162. The lowest genetic distance was obtained between Guerzni and Khouari (0.023), and the highest genetic distance between Harcha and Marmouri (0.251). The neighbour-joining phylogenetic tree showed two groups of populations indicating a cluster of Guerzni, Khouari and Marmouri, and a clear isolation of Harcha. The genetic distances, the factorial correspondence analysis, the analysis of genetic structure and the phylogenetic tree between populations revealed significant differences between Harcha and other populations, and a high similarity between Guerzni, Khouari and Marmouri. It is concluded from this study that the camel genetic resources studied are well diversified. However, the herd management, especially the random selection of breeding animals, can increase the level of genetic mixing between different populations, mainly among Guerzni, Khouari and Marmouri, that live in the same habitat and grazing area. 相似文献
17.
用RAPD技术分析了分布于中国东北的3个红松(Pinus koraiensis Seib.et Zucc.)天然群体的遗传多样性及群体间的遗传分化。38个随机引物共检测到241个可重复的位点,其中多态位点139个,占总位点的57.68%。Shannon信息指数和Nei指数的统计结果都表明,红松种内的遗传变异主要存在于群体内,凉水群体的遗传多样性水平高于黑河、虎林群体。群体内遗传相似度为0.927,群体间为0.845。红松现阶段对偏低的遗传多样性水平与第四纪冰期所遭受的严重打击和人类近期的干扰有较大关系。 相似文献
18.
Coalescent simulations were used to investigate the possible role of population subdivision and history in shaping nucleotide variation in a recombining 88-kb genomic fragment of Drosophila simulans displaying an unusual large-scale haplotype structure. The multilocus analysis, based on summary statistics using specific demographic null models under recombination, indicates that the observed levels of linkage disequilibrium differed significantly from the values expected under different bottleneck and population admixture scenarios. These results indicate that demography alone may not account for the observed pattern of variation and support the previous claim that the data are better described by a model in which an adaptive mutation has not yet gone to fixation. 相似文献
19.
Simon Dellicour Denis Michez Jean‐Yves Rasplus Patrick Mardulyn 《Molecular ecology》2015,24(5):1074-1090
Past climate change is known to have strongly impacted current patterns of genetic variation of animals and plants in Europe. However, ecological factors also have the potential to influence demographic history and thus patterns of genetic variation. In this study, we investigated the impact of past climate, and also the potential impact of host plant species abundance, on intraspecific genetic variation in three codistributed and related specialized solitary bees of the genus Melitta with very similar life history traits and dispersal capacities. We sequenced five independent loci in samples collected from the three species. Our analyses revealed that the species associated with the most abundant host plant species (Melitta leporina) displays unusually high genetic variation, to an extent that is seldom reported in phylogeographic studies of animals and plants. This suggests a potential role of food resource abundance in determining current patterns of genetic variation in specialized herbivorous insects. Patterns of genetic variation in the two other species indicated lower overall levels of diversity, and that M. nigricans could have experienced a recent range expansion. Ecological niche modelling of the three Melitta species and their main host plant species suggested a strong reduction in range size during the last glacial maximum. Comparing observed sequence data with data simulated using spatially explicit models of coalescence suggests that M. leporina recovered a range and population size close to their current levels at the end of the last glaciation, and confirms recent range expansion as the most likely scenario for M. nigricans. Overall, this study illustrates that both demographic history and ecological factors may have contributed to shape current phylogeographic patterns. 相似文献
20.
The simultaneous analysis of intra‐ and interspecies variation is challenging mainly because our knowledge about patterns of polymorphisms where both intra‐ and interspecies samples coexist is limited. In this study, we present CoMuS (Coalescent of Multiple Species), a multispecies coalescent software that can simulate intra‐ and interspecies polymorphisms. CoMuS supports a variety of speciation models and demographic scenarios related to the history of each species. In CoMuS, speciation can be accompanied by either instant or gradual isolation between sister species. Sampling may also occur in the past, and thus, we can study simultaneously extinct and extant species. Our software supports both the infinite‐ and the finite‐site model, with substitution rate heterogeneity among sites and a user‐defined proportion of invariable sites. We demonstrate the usage of CoMuS in various applications: species delimitation, software testing, model selection and parameter inference involving present‐day and ancestral samples, comparison between gradual and instantaneous isolation models, estimation of speciation time between human and chimpanzee using both intra‐ and interspecies variation. We expect that CoMuS will be particularly useful for studies where species have been separated recently from their common ancestor and phenomena such as incomplete lineage sorting or introgression still occur. 相似文献