首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

3.
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco‐evolutionary processes in natural populations. Host–parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade‐offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome‐wide SNPs. We first use genome‐wide association to identify individual SNPs associated with nematode burden. We then partition genome‐wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome‐wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large‐effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic).  相似文献   

4.
5.
Piertney SB  Webster LM 《Genetica》2010,138(4):419-432
Over the past two decades the fields of molecular ecology and population genetics have been dominated by the use of putatively neutral DNA markers, primarily to resolve spatio-temporal patterns of genetic variation to inform our understanding of population structure, gene flow and pedigree. Recent emphasis in comparative functional genomics, however, has fuelled a resurgence of interest in functionally important genetic variation that underpins phenotypic traits of adaptive or ecological significance. It may prove a major challenge to transfer genomics information from classical model species to examine functional diversity in non-model species in natural populations, but already multiple gene-targeted candidate loci with major effect on phenotype and fitness have been identified. Here we briefly describe some of the research strategies used for isolating and characterising functional genetic diversity at candidate gene-targeted loci, and illustrate the efficacy of some of these approaches using our own studies on red grouse (Lagopus lagopus scoticus). We then review how candidate gene markers have been used to: (1) quantify genetic diversity among populations to identify those depauperate in genetic diversity and requiring specific management action; (2) identify the strength and mode of selection operating on individuals within natural populations; and (3) understand direct mechanistic links between allelic variation at single genes and variance in individual fitness.  相似文献   

6.
Summary Several statistical methods for detecting associations between quantitative traits and candidate genes in structured populations have been developed for fully observed phenotypes. However, many experiments are concerned with failure‐time phenotypes, which are usually subject to censoring. In this article, we propose statistical methods for detecting associations between a censored quantitative trait and candidate genes in structured populations with complex multiple levels of genetic relatedness among sampled individuals. The proposed methods correct for continuous population stratification using both population structure variables as covariates and the frailty terms attributable to kinship. The relationship between the time‐at‐onset data and genotypic scores at a candidate marker is modeled via a parametric Weibull frailty accelerated failure time (AFT) model as well as a semiparametric frailty AFT model, where the baseline survival function is flexibly modeled as a mixture of Polya trees centered around a family of Weibull distributions. For both parametric and semiparametric models, the frailties are modeled via an intrinsic Gaussian conditional autoregressive prior distribution with the kinship matrix being the adjacency matrix connecting subjects. Simulation studies and applications to the Arabidopsis thaliana line flowering time data sets demonstrated the advantage of the new proposals over existing approaches.  相似文献   

7.
Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool‐Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST‐based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo‐climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo‐climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.  相似文献   

8.
Mougeot F  Evans SA  Redpath SM 《Oecologia》2005,144(2):289-298
The causes of population cycles fascinate and perplex ecologist. Most work have focused on single processes, whether extrinsic or intrinsic, more rarely on how different processes might interact to cause or mould the unstable population dynamics. In red grouse (Lagopus lagopus scoticus), two causal mechanisms have been supported: territorial behaviour (changes in autumn aggressiveness) and parasites (parasite induced reduction in fecundity). Here, we report on how these two regulatory processes might interact, by testing whether the parasite suspected to cause the grouse cycles, the nematode Trichostrongylus tenuis, reduces male autumn territorial behaviour. We either treated males with an anthelmintic, to remove parasites (dosed or D-males), or challenged them with infective T. tenuis larvae, to increase parasite intensity (challenged or C-males). We first show that dosing was effective in removing T. tenuis parasites, while parasite intensities increased in challenged birds during the autumn. Because old males initially had more parasites than young males, the treatments generated greater differences in parasite intensity in old than in young males. We also show that various aspects of territorial behaviour (increase in testosterone-dependent comb size in autumn, territorial call rate, likelihood of winning territorial interactions and over-winter survival) were significantly higher in dosed than in challenged males, but in old birds only. Our data thus supported the hypothesis that parasites reduce male aggressiveness during the autumn territorial contests, and could thereby influence recruitment. Our results also highlight that the territorial behaviour of young males, which have fewer parasites, is not as limited by parasites as that of old, previously territorial males. We discuss the implications of these findings for our understanding of the processes regulating red grouse populations and causing their complex, unstable population dynamics.  相似文献   

9.
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north‐east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome‐wide and locus‐specific methylation states. Following methylation‐sensitive AFLP (MSAP), 129 bands, representing 73 methylation‐susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome‐wide methylation levels and were also significantly epigenetically (FSC = 0.0227; P < 0.001) and genetically (FSC = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome‐wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus‐specific methylation states (FST outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam ) and Bayesian environmental analysis (bayenv 2). Following Sanger sequencing, genome mapping and geneontology (go ) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite‐associated cytosine methylation.  相似文献   

10.
Studying patterns of intra-specific genetic variation among populations allows for a better understanding of population structure and local adaptation. However, those patterns may differ according to the genetic markers applied, as neutral genetic markers reflect demographic processes and random genetic drift, whereas adaptive markers also carry the footprint of selection. In combination, neutral and adaptive genetic markers permit to assess the relative roles of drift and selection in shaping population structure. Among the best understood adaptive genetic loci are the genes of the major histocompatibility complex (MHC). We here study variation and differentiation at neutral SNP markers and MHC class II genes in red grouse (Lagopus lagopus scotica) from Ireland and Scotland. Irish red grouse populations are fragmented and drastically declining, but red grouse are abundant in Scotland. We find evidence for positive selection acting on the MHC genes and variation in MHC gene copy numbers among Irish individuals. Furthermore, there was significant population differentiation among red grouse from Ireland and Scotland at the neutral SNP markers (FST = 0.084) and the MHC-BLB genes (FST: BLB1 = 0.116, BLB2 = 0.090, BLB3 = 0.104). Differentiation at the MHC-BLB1 was significantly higher than at the neutral SNP markers, suggesting that selection plays an important role in shaping MHC variation, in addition to genetic drift. We speculate that the observed differentiation pattern might be due to local adaptation to different parasite regimes. These findings have strong conservation implications and we advise against the introduction of Scottish red grouse to supplement Irish populations.  相似文献   

11.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   

12.
BACKGROUND: Genetic variation in the folate metabolic pathway may influence the risk of congenital heart defects. This study was undertaken to assess the associations between the inherited and maternal genotypes for variants in folate‐related genes and the risk of a composite heart phenotype that included two component phenotypes: conotruncal heart defects (CTDs) and left‐sided cardiac lesions (LSLs). METHODS: Nine folate‐related gene variants were evaluated using data from 692 case‐parent triads (CTD, n = 419; LSL, n = 273). Log‐linear analyses were used to test for heterogeneity of the genotype‐phenotype association across the two component phenotypes (i.e., CTD and LSLs) and, when there was no evidence of heterogeneity, to assess the associations of the maternal and inherited genotypes with the composite phenotype. RESULTS: There was little evidence of heterogeneity of the genotype‐phenotype association across the two component phenotypes or of an association between the genotypes and the composite phenotype. There was evidence of heterogeneity in the association of the maternal MTR A2756G genotype (p = 0.01) with CTDs and LSLs. However, further analyses suggested that the observed associations with the maternal MTR A2756G genotype might be confounded by parental imprinting effects. CONCLUSIONS: Our analyses of these data provide little evidence that the folate‐related gene variants evaluated in this study influence the risk of this composite congenital heart defect phenotype. However, larger and more comprehensive studies that evaluate parent‐of‐origin effects, as well as additional folate‐related genes, are required to more fully explore the relation between folate and congenital heart defects. Birth Defects Research (Part A) 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness‐related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome‐wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset.  相似文献   

14.
15.
With the increasing availability of both molecular and topo‐climatic data, the main challenges facing landscape genomics – that is the combination of landscape ecology with population genomics – include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present sam βada , an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large‐scale genetic and environmental data sets. sam βada identifies candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype–environment associations. In addition, sam βada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with sam βada , bayenv , lfmm and an FST outlier method (FDIST approach in arlequin ) and compare their results. sam βada – an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada – outperforms other approaches and better suits whole‐genome sequence data processing.  相似文献   

16.
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome‐wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

17.
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome‐wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

18.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.  相似文献   

19.
Eucalyptus is characterized by high foliar concentrations of plant secondary metabolites with marked qualitative and quantitative variation within a single species. Secondary metabolites in eucalypts are important mediators of a diverse community of herbivores. We used a candidate gene approach to investigate genetic associations between 195 single nucleotide polymorphisms (SNPs) from 24 candidate genes and 33 traits related to secondary metabolites in the Tasmanian Blue Gum (Eucalyptus globulus). We discovered 37 significant associations (false discovery rate (FDR) Q < 0.05) across 11 candidate genes and 19 traits. The effects of SNPs on phenotypic variation were within the expected range (0.018 < r(2) < 0.061) for forest trees. Whereas most marker effects were nonadditive, two alleles from two consecutive genes in the methylerythritol phosphate pathway (MEP) showed additive effects. This study successfully links allelic variants to ecologically important phenotypes which can have a large impact on the entire community. It is one of very few studies to identify the genetic variants of a foundation tree that influences ecosystem function.  相似文献   

20.
In many birds, females prefer males with the biggest or brightest sexual ornaments, which might reflect a higher phenotypic quality, such as fewer parasites. Unlike humans, most birds detect near-ultraviolet (UV) light, and UV signals can play an important role in sexual signalling and mate choice. Using a spectrophotometer, we analysed the colour of red grouse Lagopus lagopus scoticus sexual ornaments (their combs). We first show that combs reflect both in the red (600–700 nm) and UV (300–400 nm) part of the spectrum. Second, we investigated whether comb size and colour, and UV reflectance in particular, reflected an aspect of individual quality: the intensity of infection by a main nematode parasite, the caecal threadworm Trichostrongylus tenuis . We first analysed comb size and colour variation, and parasite intensity variation, in relation to sex and age. Males had bigger and redder combs than females, but UV brightness was greater for female than for male combs. Comb colour also differed between age groups, with young birds of both sexes showing brighter UV than old birds. Young grouse also had fewer T. tenuis worms than old grouse. We further tested whether intensity of infection could be predicted from comb characteristics (size and colour) in male and female red grouse. We found that parasite intensity was not significantly related to comb size or red brightness, but fewer worms were predicted from brighter UV in combs, in both males and females. The results indicate that UV reflectance of combs have a quality revealing function and might play an important role in grouse mate choice: UV brightness of combs could enable both male and female red grouse to assess the parasite loads of a potential mate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号