首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spread of the pine wood nematode (PWN), Bursaphelenchus xylophylus (Nematoda; Aphelenchoididae), the causal agent of the pine wilt disease, is greatly constrained to the dispersal of its vectors, long‐horned beetles of the Monochamus genus. Disease spread at global and regional scales has been mainly caused by human‐mediated transport, yet at a local scale, the short‐ and long‐distance dispersal behaviour of the beetles determine colonization dynamics. Three mark–release–recapture experiments using commercial traps and lures allowed the parameterization of the dispersal kernel under two landscape fragmentation scenarios for the only known European PWN vector, Monochamus galloprovincialis. The respective release of 171 and 353 laboratory‐reared beetles in continuous pine stands in 2009 and 2010 resulted in 36% and 28% recapture rates, yet, at a fragmented landscape in 2011, only 2% of the released 473 individuals could be recaptured. Recaptures occurred as soon as 7–14 days after their release, in agreement with the requirement of sexual maturation to respond to the pheromone–kairomone attractants. Data from the first two experiments were fitted to one mechanical and two empirical dispersal models, from which the distance dispersal kernels could be computed. Derived estimated radii enclosing 50% and 99% of dispersing M. galloprovincialis under continuous pine stands ranged between 250–532 m and 2344–3495 m depending on the replicate and choice of model. Forecasted recaptures in 2011 resulted in a moderate underestimation of long‐distance dispersal, probably influenced by the high degree of habitat fragmentation. In addition, trapping parameters such as the effective sampling area (0.57–0.76 ha) or the seasonal sampling range (426–645 m) could be derived. Observed results, derived dispersal kernels and trapping parameters provide valuable information for the integrated pest management of PWD. Furthermore, estimated dispersal distances indicate that ongoing clear‐cut measures for eradication in the European Union are likely ineffective in stopping the vectors dispersal.  相似文献   

2.
Novel associations between exotic pathogens and native insects may result in major ecological and economical losses. In Europe, Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae) is the only known vector of the exotic pine wood nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle (Nematoda: Aphelenchoididae), the causal agent of pine wilt disease (PWD). Transportation of goods containing nematode‐infested beetles is the main pathway for the spread of the disease. In this scenario, management actions involving early detection and eradication are critical to stop further spread by the vector. Although dispersal of mature M. galloprovincialis has been successfully tracked using commercial baits and traps, dispersal ability of immature individuals is poorly understood. Sexual maturation and other physiological traits related to dispersal were studied for newly emerged M. galloprovincialis after different shoot‐feeding spans. Sexual maturation was complete after on average 12 (males) or 13 (females) feeding days. Monochamus galloprovincialis adults emerged with an average of 10% lipid and 23.8% (males) or 29.9% (females) pterothorax muscle content, and these percentages did not change significantly during shoot feeding. Microtomography images of wing muscle structures at different maturation stages confirmed these results. Emerged adults that were kept unfed survived an average of 12 days in the lab. The ability of unfed immature insects to fly through hostless terrain was studied by marking and releasing newly emerged insects from a crop area located up to 3 km away from two small pine stands. The longest flown distance recorded was 2 km. Fitted regressions indicated that immature insects could have travelled up to 3 109 m to reach the experimental stands. We found that M. galloprovincialis emerge with well‐developed thoracic muscles and energy reserves that enable them to sustain long flights over non‐forested areas. These findings should aid managers and policy makers in devising sound procedures in areas where the risk of introducing PWD is high.  相似文献   

3.
Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae) is a secondary wood borer that acquired primordial importance since it was identified as the European vector of Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). An effective trapping method is needed as a tool for managing this insect vector and allowing early detection of nematode transportation. Among effective attractants identified in recent years are the specific M. galloprovincialis aggregation pheromone, host pine kairomones such as α‐pinene and bark beetle kairomones like ipsenol and methyl‐butenol. The main objective of this study was to optimize the combination of these volatiles to improve lure attractiveness and specificity. Based on ten complementary field experiments, we found a pheromone dose‐response of trap catches. The best combination of attractants was the aggregation pheromone plus two bark beetle kairomones, ipsenol and methyl‐butenol. Addition of pine terpenes, such as α‐pinene, did not significantly improve M. galloprovincialis trap capture, but did increase catch of non target species, including natural enemies. The use of pine terpenes would be advisable only if priorizing to maximize removal of vectors. While this research has lead to the development a new, highly attractive commercial lure for mature pine sawyers, none of the tested blends were successful in attracting immature pine sawyer adults. Further investigation is needed to develop attractants for these beetles.  相似文献   

4.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

5.
The pine sawyer beetle Monochamus galloprovincialis, a secondary pest of pines in Europe and North Africa, has become important as it was identified as the vector in Europe of Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). An effective trapping system is needed, not only for monitoring the insect vector but also for direct control of its population. Trapping may also provide key information on the nematode load carried by the beetles, allowing early detection of infections, provided that captured beetles remain alive within the trap. Highly effective attractants have been developed in recent years that are commonly used in combination with diverse standard trap designs. In this study, several trap designs were developed and compared to commercial standard models in order to determine which designs maximized the number of attracted insects actually caught and the proportion of them remaining alive. In total, 12 trap designs were evaluated in five field experiments carried out in France, Spain and Portugal. Teflon coating applied to the whole trap and extended, ventilated collecting cups resulted in a significant improvement of trap performance. These modifications led to significant increases of pine sawyer catches, up to 275%, when applied to multiple‐funnel or black cross‐vane traps, compared to standard designs. Furthermore, a significant proportion of the captured beetles remained alive within the trap. These findings have been used to develop new commercial traps (Econex Multifunnel‐12® and Crosstrap®; Econex, Murcia, Spain) available to forest managers. A model for insect survival within the trap was also fitted. Elapsed time between consecutive samplings, mean relative humidity and maximum radiation were the three most significant variables. Thus, traps should provide a suitable sample of live insects if sun exposure of the trap is minimized and a reasonable sampling schedule is implemented.  相似文献   

6.
7.
The pine processionary moth, Thaumetopoea pityocampa, causes serious defoliation to Cedrus, Pinus and Pseudotsuga trees, as well as health problems in humans, pets and farm animals due to their urticating hairs. Environmentally friendly strategies for the management of T. pityocampa include: removal of egg batches, removal of nests, trapping of migrant larvae, spraying microbial or Insect Growth Regulator (IGR) insecticides and biocontrol, as well as pheromone‐based adult trapping and mating‐disruption. In the present paper, results on innovative technology for the control of T. pityocampa infestation using pheromone mass‐trapping are reported. Two 1‐ha plots were identified in the study area (central‐south Italy), a pine woodland recreational site growing Pinus halepensis. In the experimental plot (MT‐plot), 10 G‐traps (funnel trap type) baited with (Z)‐13‐hexadecen‐11‐ynyl acetate sex pheromone component were placed for mass‐trapping of adults; the other plot was used as a control‐plot (C‐plot). The T. pityocampa population was monitored using the two central traps in the MT‐plot and two traps positioned in the C‐plot. In addition, the winter nests made by T. pityocampa larvae overwintering on pine trees were counted. After 2 years of mass‐trapping, the number of adults trapped by the monitoring pheromone traps decreased in the MT‐plot, but not in the C‐plot, whereas the number of nests decreased in both plots. Statistical results highlighted significant differences in trap catches between the two plots but not between years. In the case of nests, differences among plots were not significant before the mass‐trapping, but significant after 1‐year treatment. According to our results, the mass‐trapping technique is able to reduce T. pityocampa infestations. This pheromone method can be applied in combination with other control systems in the context of integrated pest management in recreational areas.  相似文献   

8.
1 Previous work had suggested that adult male click beetles (Agriotes spp.) show differential responses to species specific pheromone traps. This hypothesis was tested using mark–release–recapture methods to estimate the maximum sampling range and the effective sampling area of traps for three species. 2 Captured beetles of the species Agriotes lineatus, Agriotes obscurus and Agriotes sputator were marked to show the direction of release, the distance of the release point from the trap and the replicate. Analysis of variance showed that there were significant differences in recapture rates between species and release distances. There were no significant differences between release direction and replicates. 3 Calculated linear speeds suggested differences in movement rates in the order: A. lineatus > A. obscurus > A. sputator. There were also substantial differences between the species in the maximum sampling ranges and effective sampling areas of the traps. These placed the species in the same order. 4 The results are used to estimate the minimum cost of mass trapping programmes to prevent males from mating, giving values of €165/ha/year (A. lineatus), €247.5/ha/year (A. obscurus) and €2343/ha/year (A. sputator). 5 Implications for the use of pheromone traps in wireworm pest management are discussed. It is concluded that current U.K. recommendations based on the cumulative total catch of the three species over a sampling season can be improved by considering the spatial relationships between the adult trapping system and larval distribution. The current constraint to this is the general inability to separate wireworms into species.  相似文献   

9.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

10.
The small white‐marmorated longicorn beetle, Monochamus sutor (L.) (Coleoptera: Cerambycidae), is widely distributed throughout Europe and Asia. It is a potential vector of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, the causal agent of the devastating pine wilt disease. Volatiles were collected from both male and female beetles after maturation feeding. In analyses of these collections using gas chromatography (GC) coupled to mass spectrometry, a single male‐specific compound was detected and identified as 2‐(undecyloxy)‐ethanol. In analyses by GC coupled to electroantennography the only consistent responses from both female and male antennae were to this compound. Trapping tests were carried out in Spain, Sweden, and China. 2‐(Undecyloxy)‐ethanol was attractive to both male and female M. sutor beetles. A blend of the bark beetle pheromones ipsenol, ipsdienol, and 2‐methyl‐3‐buten‐2‐ol was also attractive to both sexes in Spain and Sweden, and further increased the attractiveness of the 2‐(undecyloxy)‐ethanol. The host plant volatiles α‐pinene, 3‐carene, and ethanol were weakly attractive, if at all, in all three countries and did not significantly increase the attractiveness of the blend of 2‐(undecyloxy)‐ethanol and bark beetle pheromones. 2‐(Undecyloxy)‐ethanol is thus proposed to be the major, if not only, component of the male‐produced aggregation pheromone of M. sutor, and its role is discussed. This compound has been reported as a pheromone of several other Monochamus species and is another example of the parsimony that seems to exist among the pheromones of many of the Cerambycidae. Traps baited with 2‐(undecyloxy)‐ethanol and bark beetle pheromones should be useful for monitoring and control of pine wilt disease, should M. sutor be proven to be a vector of the nematode.  相似文献   

11.
This study aimed to develop a semiochemical‐baited trapping system to monitor the populations of small banded pine weevil, Pissodes castaneus, a serious pest in Pinus sylvestris young stands that are weakened by biotic and abiotic factors. The scope of the work included the development of a dispenser for compounds (ethanol and α‐pinene) emitted by P. sylvestris and the pheromones of P. castaneus: grandisol and grandisal. Additionally, the effectiveness of beetle catches in different types of traps (unitrap, cross‐unitrap and long and short pipe traps) baited with a dispenser was assessed. The olfactometric studies showed that most of the newly hatched beetles that had not fed were attracted by a mixture of grandisol and grandisal. However, in the group of feeding beetles, half were attracted by a mixture of ethanol and α‐pinene. These results indicated that both pheromones and α‐pinene plus ethanol should be useful for capturing P. castaneus beetles. In the field trials, the highest efficiency was found in baited unitraps that caught up to several hundred P. castaneus beetles, while the baited cross‐unitraps caught up to a few dozen beetles. No insects were found in either type of baited pipe trap or in any of the unbaited control traps. The baited unitraps and cross‐unitraps also collected, with varied intensity, Hylobius abietis beetles, a serious pest of reforestations. These results indicate the possibility of using a unitrap baited with a 4‐component attractant for monitoring P. castaneus in integrated pest management for the protection of young forests.  相似文献   

12.
The Japanese pine sawyer, Monochamus alternatus Hope, is the primary vector of the pinewood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, the causative agent of pine wilt disease in East Asia. The range of B. xylophilus expands through the dispersal capability of its vectors and transport of host trees infested with the pathogenic nematode and its vector. Outbreaks of M. alternatus populations occur together with the epidemics of pine wilt disease, because the insect reproduces on host trees recently killed by the disease. We measured some dispersal and life-history traits of adults for four years to determine the change in flight capability and life history of a field population of beetles in relation to an outbreak. The population monitored exhibited an outbreak and subsequent collapse. The greatest mean body mass, largest area of hind wings, smallest wing load, and shortest preoviposition period were observed in the year of outbreak. By contrast, there was no difference in the ovariole number between pre-outbreak (latent) and outbreak years. The greatest mean hind wing area and smallest wing load suggest likely result in greater flight performance. As other studies showed, adult body mass is related positively to the flight performance and oviposition rate. Moreover, a shortened preoviposition period leads to a high reproduction rate. Thus, adults in outbreak populations are “superdispersers” because they are likely to have enhanced flight capability and reproduction power. This suggests that M. alternatus populations at the onset of a population outbreak enhance the expansion rate of B. xylophilus range more than those during the latent and pre-outbreak periods.  相似文献   

13.
Pine wilt disease (PWD) has caused significant Masson pine mortality in the Three Gorges reservoir region in central China. In this study, five uniform Masson pine stand types infected by PWD were selected and surveyed on slopes and aspects with similar environmental conditions. In sites that had been infected, soil bulk density was reduced, and the difference among the groups was statistically significant (< 0.05) at the 0–10 cm and 10–20 cm soil layers, but not at 20–40 cm. Other soil water‐related physical properties, excluding noncapillary porosity, significantly differed among the groups in all soil layers. Additionally, the values of available phosphorus, sodium, potassium, calcium, and magnesium were higher in the invaded stands, but the total nitrogen and organic matter contents were lower. Masson pine does not become reestablished following PWD‐induced mortality but is instead replaced by broad‐leaved tree species. Among the 19 examined environmental variables, five were found to be significantly related with the ordination of plant community structure: Masson pine stumps (MPS), K+, capillary water holding capacity (CWHC), capillary porosity (CP), and soil water content (SWC). Among these factors, the plant community structure was principally related to MPS and K+. The findings of this study show that the outbreak of PWD has impacted Masson pine forest soil properties and altered forest community composition. The disease is negatively related with the presence of Masson pine and positively associated with that of broad‐leaved tree species.  相似文献   

14.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

15.
Monochamus sutor (Linnaeus) (Coleoptera: Cerambycidae) is a secondary wood borer that has been hypothesized as capable of transmitting Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). This fact supposes a risk of spread of PWD over Europe and has created an urgent need for effective tools to detect and monitor both the nematode and the insect species that vectors it. Recent reporting of 2‐undecyloxy‐1‐ethanol as the M. sutor male‐produced aggregation pheromone has opened the possibility of developing an efficient lure for this species. It is known that some European bark beetle pheromone compounds and host volatiles kairomonally attract this species. Besides, smoke volatiles from burnt trees might play a role in M. sutor host location. In this work, field trapping experiments during 3 years in three countries (Spain, Sweden and Austria), aimed to develop an efficient pheromone‐kairomone lure operative for M. sutor management were carried out. Electroantennographic responses by M. sutor to Ips pheromones and to the Pityogenes chalcographus pheromone chalcogran were also studied. GC‐EAG recording showed that M. sutor males and females clearly responded to ipsenol and ipsdienol, and females also responded to 2‐methyl‐3‐buten‐2‐ol. Chalcogran elicited a response to M. sutor female antennae. In field tests, ipsenol was the most attractive kairomone to both sexes of M. sutor, whereas ipsdienol, cis‐verbenol and 2‐methyl‐3‐buten‐2‐ol were attractive and chalcogran was unattractive. When combined with the pheromone, most bark beetle kairomones increased catches of both sexes although chalcogran was completely ineffective. Thus, ipsenol was the strongest individual kairomone for M. sutor and the best single kairomone to be combined with the pheromone. Smoke volatile blends tested in Spain and Austria did not elicit responses, suggesting that these compounds are likely not involved in host finding by this species.  相似文献   

16.
Cerambycid adults of the genus Monochamus transmit the pine wood nematode (Bursaphelenchus xylophilus [Steiner et Buhrer] Nickle), the causative agent of pine wilt disease. To confirm the transmission of B. xylophilus between vector species, nematode‐infected Monochamus alternatus Hope and nematode‐free Monochamus saltuarius (Gebler) adults were paired and their behaviour was observed for 107–220 min. In three pairs that exhibited mounting without copulation, nematode transmission occurred, whereas it was not found in another pair without mountings. The effect of nematode transmission between different vector species on the invasion biology of B. xylophilus is discussed.  相似文献   

17.
18.
  • 1 The range of attraction of YATLOR pheromone traps was studied to gain information on the number of traps needed for mass trapping of males of two Agriotes species.
  • 2 Male click beetles of the species Agriotes lineatus (L.) and Agriotes obscurus (L.) (25–30 individuals per release point) were marked and released at a distance of 2, 5, 10, 15, 20 and 60 m from a pheromone trap both along and opposite to the known prevailing wind direction. Traps were regularly inspected over approximately 1 month. The percentage of recaptured beetles was calculated and analyzed using analysis of variance. Maximum sampling ranges and effective sampling areas were calculated.
  • 3 Averaged over all five trials and distances, approximately 40% of the released beetles (A. lineatus and A. obscurus) were recaptured. The percentage recapture of male adults was significantly affected by release distance, whereas no differences were found for species and release direction.
  • 4 Males were recaptured from all release points and the percentage recapture decreased (in part significantly) with increasing distance from 76% (2 m) to 35% (15 m) and 9% (60 m), respectively. Most of the beetles were recaptured within the first 3 days after release, independent of the distance, except 60 m. The effective sampling area for A. lineatus was 1089 m2 after 12 days and increased to 1735 m2 after 30 days. Corresponding values for A. obscurus were considerably higher: 1518 m2 for 12 days and 2633 m2 for 30 days.
  • 5 We conclude that the range of attraction of the pheromone traps for A. lineatus and A. obscurus is comparatively low, providing high percentage recapture only for release distances up to 10 m. Accordingly, any approach targeted on preventing mating by male mass trapping would require a dense network of pheromone traps.
  相似文献   

19.
Estimation of population trends and demographic parameters is important to our understanding of fundamental ecology and species management, yet these data are often difficult to obtain without the use of data from population surveys or marking animals. The northeastern Minnesota moose (Alces alces Linnaeus, 1758) population declined 58% during 2006–2017, yet aerial surveys indicated stability during 2012–2017. In response to the decline, the Minnesota Department of Natural Resources (MNDNR) initiated studies of adult and calf survival to better understand cause‐specific mortality, calf recruitment, and factors influencing the population trajectory. We estimated population growth rate (λ) using adult survival and calf recruitment data from demographic studies and the recruitment–mortality (R‐M) Equation and compared these estimates to those calculated using data from aerial surveys. We then projected population dynamics 50 years using each resulting λ and used a stochastic model to project population dynamics 30 years using data from the MNDNR's studies. Calculations of λ derived from 2012 to 2017 survey data, and the R‐M Equation indicated growth (1.02 ± 0.16 [SE] and 1.01 ± 0.04, respectively). However, the stochastic model indicated a decline in the population over 30 years (λ = 0.91 ± 0.004; 2014–2044). The R‐M Equation has utility for estimating λ, and the supporting information from demographic collaring studies also helps to better address management questions. Furthermore, estimates of λ calculated using collaring data were more certain and reflective of current conditions. Long‐term monitoring using collars would better inform population performance predictions and demographic responses to environmental variability.  相似文献   

20.
The objective of the current study was to identify pathogens of the large larch bark beetle, Ips cembrae, which is a secondary pest that has produced several local outbreaks across Europe in recent years. Beetles were collected from pheromone traps, trap trees and emergence traps (Larix decidua) during 2007 to 2011 at 10 study sites in central Europe. A total of 3379 mature and callow beetles were examined with a light microscope, and only two microsporidian pathogens [Chytridiopsis typographi and a diplokaryotic microsporidium (probably Nosema sp.)] and two gregarines (Gregarina typographi and Mattesia schwenkei) were found. Within the I. cembrae populations, the infection rate for C. typographi ranged from 2 to 58%. Nosema sp. occurred in only two beetles in 2007 (at two study sites). G. typographi was recorded only in Austria and Croatia and only in 1–2% of the beetles in those countries. Mattesia schwenkei was observed solely in Croatia in 0.6% of the beetles in that country. Only one fungal pathogen in the genus Fusarium was found and only in two mature beetles (0.7%) in 2010. The pathogen species found during our study of I. cembrae were very similar to the pathogens previously identified for Ips typographus. No species‐specific pathogen was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号