首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In Batesian mimicry a palatable mimic deceives predators by resembling an unpalatable model. The evolution of Batesian mimicry relies on the visual capabilities of the potential predators, as prey detection provides the selective force driving evolutionary change. We compared the visual capabilities of several potential predators to test predictions stemming from the hypothesis of Batesian mimicry between two salamanders: the model species Notophthalmus viridescens, and polymorphic mimic, Plethodon cinereus. First, we found mimicry to be restricted to coloration, but not brightness. Second, only bird predators appeared able to discriminate between the colors of models and nonmimic P. cinereus. Third, estimates of salamander conspicuousness were background dependent, corresponding to predictions only for backgrounds against which salamanders are most active. These results support the hypothesis that birds influence the evolution of Batesian mimicry in P. cinereus, as they are the only group examined capable of differentiating N. viridescens and nonmimetic P. cinereus. Additionally, patterns of conspicuousness suggest that selection from predators may drive the evolution of conspicuousness in this system. This study confirms the expectation that the visual abilities of predators may influence the evolution of Batesian mimicry, but the role of conspicuousness may be more complex than previously thought.  相似文献   

2.
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model''s physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly.  相似文献   

3.
Since the phenomenon of mimicry was first described by Bates in 1862 it has become one of the foundational examples of adaptive evolution. Numerous subcategories of mimicry and dozens of hypotheses pertaining to its evolution and maintenance have been proposed. Many of these hypotheses, however, are difficult to test in experimental settings, and data from natural observations are often inadequate. Here we use data from a long‐term survey of butterfly presence and abundance to test several hypotheses pertaining to Batesian and female‐limited polymorphic mimicry (FPM; a special case of Batesian mimicry). We found strong evidence that models outnumber mimics in both mimicry systems, but no evidence for an increase in relative abundance of FPM mimics to their Batesian counterparts. Tests of the early‐emergence/model first hypothesis showed strong evidence that the Batesian mimic routinely emerges after the model, while emergence timing in the FPM system was site specific, suggesting that other ecological factors are at play. These results demonstrate the importance of long‐term field observations for testing evolutionary and ecological hypotheses.  相似文献   

4.
Batesian mimicry is the resemblance between unpalatable models and palatable mimics. The widely accepted idea is that the frequency and the unprofitability of the model are crucial for the introduction of a Batesian mimic into the prey population. However, experimental evidence is limited and furthermore, previous studies have considered mainly perfect mimicry (automimicry). We investigated imperfect Batesian mimicry by varying the frequency of an aposematic model at two levels of distastefulness. The predator encountered prey in a random order, one prey item at a time. The prey were thus presented realistically in a sequential way. Great tits (Parus major) were used as predators. This experiment, with a novel signal, supports the idea that Batesian mimics gain most when the models outnumber them. The mortalities of the mimics as well as the models were significantly dependent on the frequency of the model. Both prey types survived better the fewer mimics there were confusing the predator. There were also indications that the degree of distastefulness of the model had an effect on the survival of the Batesian mimic: the models survived significantly better the more distasteful they were. The experiment supports the most classical predictions in the theories of the origin and maintenance of Batesian mimicry.  相似文献   

5.
Batesian mimicry is characterized by phenotypic convergence between an unpalatable model and a palatable mimic. However, because convergent evolution may arise via alternative evolutionary mechanisms, putative examples of Batesian mimicry must be rigorously tested. Here, we used artificial butterfly facsimiles (N = 4000) to test the prediction that (1) palatable Limenitis lorquini butterflies should experience reduced predation when in sympatry with their putative model, Adelpha californica, (2) protection from predation on L. lorquini should erode outside of the geographical range of the model, and (3) mimetic color pattern traits are more variable in allopatry, consistent with relaxed selection for mimicry. We find support for these predictions, implying that this convergence is the result of selection for Batesian mimicry. Additionally, we conducted mark–recapture studies to examine the effect of mimicry and found that mimics survive significantly longer at sites where the model is abundant. Finally, in contrast to theoretical predictions, we found evidence that the Batesian model (A. californica) is protected from predation outside of its geographic range. We discuss these results considering the ongoing hybridization between L. lorquini and its sister species, L. weidemeyerii, and growing evidence that selection for mimicry predictably leads to a reduction in gene flow between nascent species.  相似文献   

6.
Batesian mimicry evolves when the 'umbrella' of protection provided by resemblance to a conspicuous unpalatable model species is sufficient to overcome increased predation risk associated with greater conspicuousness. However, the shape and extent of this umbrella, that is, how the level of protection provided by mimicry changes with degree of resemblance between model and mimic, is poorly known. We investigated the response of wild predatory fishes to plastic replicas of a model-mimic species pair of tropical reef fishes, Canthigaster valentini (a toxic pufferfish, the model) and Paraluteres prionurus (the putative mimic), and additional replicas with progressively lower degrees of resemblance to the mimic species. Our results reveal a relatively broad region of protection, indicated by a reduced approach rate by piscivorous fishes, surrounding the colour pattern of the model species. Protection increased with increasing resemblance. By contrast, the response of non-piscivorous fishes was unrelated to degree of resemblance of replicas to the model. Our results suggest that piscivorous fishes on the reef are educated regarding the toxicity of C. valentini, and that avoidance of fish having the pufferfish colour pattern has generated selection favouring mimetic resemblance by the palatable P. prionurus. The relatively broad protective umbrella has probably facilitated the initial evolution of resemblance in the palatable prey species despite the potential hazards of greater conspicuousness.  相似文献   

7.
Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. Recent studies using mathematical modeling have questioned the dynamics of Müllerian mimicry, suggesting that fitness benefits should be calculated in a way similar to Batesian mimicry; that is, according to the relative unpalatability difference between co-mimics. Batesian mimicry is very sensitive to the availability of alternative prey, but the effects of alternative prey for Müllerian dynamics are not known and experiments are rare. We designed two experiments to test the effect of alternative prey on imperfect Batesian and Müllerian mimicry complexes. When alternative prey were scarce, imperfect Batesian mimics were selected out from the population, but abundantly available alternative prey relaxed selection against imperfect mimics. Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.  相似文献   

8.
Batesian mimicry is seen as an example of evolution by natural selection, with predation as the main driving force. The mimic is under selective pressure to resemble its model, whereas it is disadvantageous for the model to be associated with the palatable mimic. In consequence one might expect there to be an evolutionary arms race, similar to the one involving host-parasite coevolution. In this study, the evolutionary dynamics of a Batesian mimicry system of model ants and ant-mimicking salticids is investigated by comparing the phylogenies of the two groups. Although Batesian mimics are expected to coevolve with their models, we found the phylogenetic patterns of the models and the mimics to be indicative of adaptive radiation by the mimic rather than co-speciation between the mimic and the model. This shows that there is strong selection pressure on Myrmarachne, leading to a high degree of polymorphism. There is also evidence of sympatric speciation in Myrmarachne, the reproductive isolation possibly driven by female mate choice in polymorphic species.  相似文献   

9.
David B. Ritland 《Oecologia》1991,88(1):102-108
Summary Understanding the dynamics of defensive mimicry requires accurately characterizing the comparative palatability of putative models and mimics. The Florida viceroy butterfly (Limenitis archippus floridensis) is traditionally considered a palatable Batesian mimic of the purportedly distasteful Florida queen (Danaus gilippus berenice). I re-evaluated this established hypothesis by directly assessing palatability of viceroys and queens to red-winged blackbirds in a laboratory experiment. Representative Florida viceroys were surprisingly unpalatable to red-wings; only 40% of viceroy abdomens were entirely eaten (compared to 98% of control butterfly abdomens), and nearly one-third were immediately tasterejected after a single peck. In fact, the viceroys were significantly more unpalatable than representative Florida queens, of which 65% were eaten and 14% taste-rejected. Thus, viceroys and queens from the sampled populations exemplify Müllerian rather than Batesian mimicry, and the viceroy appears to be the stronger model. These findings prompt a reassessment of the ecological and evolutionary dynamics of this classic mimicry relationship.  相似文献   

10.
Batesian mimics typically dupe visual predators by resembling noxious or deadly model species. Ants are unpalatable and dangerous to many arthropod taxa, and are popular invertebrate models in mimicry studies. Ant mimicry by spiders, especially jumping spiders, has been studied and researchers have examined whether visual predators can distinguish between the ant model, spider mimic and spider non‐mimics. Tropical habitats harbour a diverse community of ants, their mimics and predators. In one such tripartite mimicry system, we investigated the response of an invertebrate visual predator, the ant‐mimicking praying mantis (Euantissa pulchra), to two related ant‐mimicking spider prey of the genus Myrmarachne, each closely mimicking its model ant species. We found that weaver ants (Oecophylla smaragdina) were much more aggressive than carpenter ants (Camponotus sericeus) towards the mantis. Additionally, mantids exhibited the same aversive response towards ants and their mimics. More importantly, mantids approached carpenter ant‐mimicking spiders significantly more than often that they approached weaver ant‐mimicking spiders. Thus, in this study, we show that an invertebrate predator, the praying mantis, can indeed discriminate between two closely related mimetic prey. The exact mechanism of the discrimination remains to be tested, but it is likely to depend on the level of mimetic accuracy by the spiders and on the aggressiveness of the ant model organism.  相似文献   

11.
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between‐species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic‐model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities.  相似文献   

12.
The resemblance between palatable mimics and unpalatable models in Batesian mimicry systems is tempered by many factors, including the toxicity of the model species. Model toxicity is thought to influence both the occurrence of mimicry and the evolution of mimetic phenotypes, such that mimicry is most likely to persist when models are particularly toxic. Additionally, model toxicity may influence the evolution of mimetic phenotype by allowing inaccurate mimicry to evolve through a mechanism termed ‘relaxed selection’. We tested these hypotheses in a salamander mimicry system between the model Notophthalmus viridescens and the mimic Plethodon cinereus, in which N. viridescens toxicity takes the form of tetrodotoxin. Surprisingly, though we discovered geographic variation in model toxin level, we found no support for the hypotheses that model toxicity directly influences either the occurrence of mimicry or the evolution of mimic phenotype. Instead, a link between N. viridescens size and toxicity may indirectly lead to relaxed selection in this mimicry system. Additionally, limitations of predator perception or variation in the rate of phenotypic evolution of models and mimics may account for the evolution of imperfect mimicry in this salamander species. Finally, variation in predator communities among localities or modern changes in environmental conditions may contribute to the patchy occurrence of mimicry in P. cinereus.  相似文献   

13.
Mimicry, the resemblance of one species by another, is a complex phenomenon where the mimic (Batesian mimicry) or the model and the mimic (Mullerian mimicry) gain an advantage from this phenotypic convergence. Despite the expectation that mimics should closely resemble their models, many mimetic species appear to be poor mimics. This is particularly apparent in some systems in which there are multiple available models. However, the influence of model pattern diversity on the evolution of mimetic systems remains poorly understood. We tested whether the number of model patterns a predator learns to associate with a negative consequence affects their willingness to try imperfect, novel patterns. We exposed week‐old chickens to coral snake (Micrurus) color patterns representative of three South American areas that differ in model pattern richness, and then tested their response to the putative imperfect mimetic pattern of a widespread species of harmless colubrid snake (Oxyrhopus rhombifer) in different social contexts. Our results indicate that chicks have a great hesitation to attack when individually exposed to high model pattern diversity and a greater hesitation to attack when exposed as a group to low model pattern diversity. Individuals with a fast growth trajectory (measured by morphological traits) were also less reluctant to attack. We suggest that the evolution of new patterns could be favored by social learning in areas of low pattern diversity, while individual learning can reduce predation pressure on recently evolved mimics in areas of high model diversity. Our results could aid the development of ecological predictions about the evolution of imperfect mimicry and mimicry in general.  相似文献   

14.
Batesian mimics gain protection from predation through the evolution of physical similarities to a model species that possesses anti-predator defences. This protection should not be effective in the absence of the model since the predator does not identify the mimic as potentially dangerous and both the model and the mimic are highly conspicuous. Thus, Batesian mimics should probably encounter strong predation pressure outside the geographical range of the model species. There are several documented examples of Batesian mimics occurring in locations without their models, but the evolutionary responses remain largely unidentified. A mimetic species has four alternative evolutionary responses to the loss of model presence. If predation is weak, it could maintain its mimetic signal. If predation is intense, it is widely presumed the mimic will go extinct. However, the mimic could also evolve a new colour pattern to mimic another model species or it could revert back to its ancestral, less conspicuous phenotype. We used molecular phylogenetic approaches to reconstruct and test the evolution of mimicry in the North American admiral butterflies (Limenitis: Nymphalidae). We confirmed that the more cryptic white-banded form is the ancestral phenotype of North American admiral butterflies. However, one species, Limenitis arthemis, evolved the black pipevine swallowtail mimetic form but later reverted to the white-banded more cryptic ancestral form. This character reversion is strongly correlated with the geographical absence of the model species and its host plant, but not the host plant distribution of L. arthemis. Our results support the prediction that a Batesian mimic does not persist in locations without its model, but it does not go extinct either. The mimic can revert back to its ancestral, less conspicuous form and persist.  相似文献   

15.
Aposematism is a well known and widely used strategy for reducing predation by conspicuous signalling of unprofitability. However, the increased conspicuousness could make this strategy costly if there are no secondary defences to back the signal up. This has made the elucidation of the evolutionary mechanisms for aposematism and that of the closely‐related Batesian and Mullerian mimicry difficult. The present study aims to test whether cryptic and nondefended prey could reduce their predation risk by grouping with aposematic and defended prey. To do this, we used groups of artificial baits that were either cryptic and palatable or conspicuous and unpalatable, along with the corresponding control treatments. These were then presented in mixed and homogeneous treatment groups within a field setting and the local wild bird assemblage was allowed to select and remove baits at will. The results obtained show that undefended non‐aposematic prey can benefit by grouping with aposematic prey, with no evidence that predation rates for aposematic prey were adversely affected by this association. These results provide insights into the evolution of Batesian mimicry. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 81–89.  相似文献   

16.
In aggressive mimicry, a 'predatory' species resembles a model that is harmless or beneficial to a third species, the 'dupe'. We tested critical predictions of Batesian mimicry models, i.e. that benefits of mimicry to mimics and costs of mimicry to models should be experienced only when model and mimic co-occur, in an aggressive mimicry system involving juvenile bluestreaked cleaner wrasse (Labroides dimidiatus) as models and bluestriped fangblennies (Plagiotremus rhinorhynchos) as mimics. Cleanerfish mimics encountered nearly twice as many potential victims and had higher striking rates when in proximity to than when away from the model. Conversely, in the presence of mimics, juvenile cleaner wrasses were visited by fewer clients and spent significantly less time foraging. The benefits to mimic and costs to model thus depend on a close spatial association between model and mimic. Batesian mimicry theory may therefore provide a useful initial framework to understand aggressive mimicry.  相似文献   

17.
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in ‘deep sympatry’), rare (i.e. at the sympatry/allopatry boundary or ‘edge sympatry’) and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision – within and among different mimics – offers novel insights into the causes and consequences of mimicry.  相似文献   

18.
Batesian and Müllerian mimicry relationships differ greatly in terms of selective pressures affecting the participants; hence, accurately characterizing a mimetic interaction is a crucial prerequisite to understanding the selective milieux of model, mimic, and predator. Florida viceroy butterflies (Limenitis archippus floridensis) are conventionally characterized as palatable Batesian mimics of distasteful Florida queens (Danaus gilippus berenice). However, recent experiments indicate that both butterflies are moderately distasteful, suggesting they may be Müllerian comimics. To directly test whether the butterflies exemplify Müllerian mimicry, I performed two reciprocal experiments using red-winged blackbird predators. In Experiment 1, each of eight birds was exposed to a series of eight queens as “models,” then offered four choice trials involving a viceroy (the putative “mimic”) versus a novel alternative butterfly. If mimicry was effective, viceroys should be attacked less than alternatives. I also compared the birds' reactions to solo viceroy “mimics” offered before and after queen models, hypothesizing that attack rate on the viceroy would decrease after birds had been exposed to queen models. In Experiment 2, 12 birds were tested with viceroys as models and queens as putative mimics. The experiments revealed that (1) viceroys and queens offered as models were both moderately unpalatable (only 16% entirely eaten), (2) some birds apparently developed conditioned aversions to viceroy or queen models after only eight exposures, (3) in the subsequent choice trials, viceroy and queen “mimics” were attacked significantly less than alternatives, and (4) solo postmodel mimics were attacked significantly less than solo premodel mimics. Therefore, under these experimental conditions, sampled Florida viceroys and queens are comimics and exemplify Müllerian, not Batesian, mimicry. This compels a reassessment of selective forces affecting the butterflies and their predators, and sets the stage for a broader empirical investigation of the ecological and evolutionary dynamics of mimicry.  相似文献   

19.
Prey species gain protection by imitating signals of unpalatable models in defensive mimicry. Mimics have been traditionally classified as Batesian (palatable mimic resembling an unpalatable model) or Müllerian (unpalatable mimic resembling a similarly unpalatable model). However, recent studies suggest that rather than discrete categories, the phenomenon of mimicry can be better understood as a continuum. The level of unpalatability of defended prey is a key factor in determining the type of mimetic relationship. Herein, we used insects (ladybugs and true bugs) from a putative European “red–black” mimetic complex as experimental models of defended species and crickets as a control prey. We offered the prey to two species of sympatric invertebrate predators (praying mantis and spider) and video recorded the interactions. We tested three alternative hypotheses, namely (i) the three red–black species tested are similarly defended against both predators; (ii) some red–black species are better defended than others against both predator species, and (iii) the effectiveness of the red–black species defenses is predator dependent. Both predators attacked all prey types with a similar frequency. But while all three red–black species similarly elicited aversive behaviors in spiders, the mantises' aversive reactions varied depending on the prey species. Our results provide support to the third hypothesis, suggesting that the same prey species can fall into different parts of the spectrum of palatability–unpalatability depending on the type of predator.  相似文献   

20.
Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether—and in which direction—Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an ‘evolutionary momentum’ that drives the further evolution of more precise mimicry—even after models go extinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号