首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

2.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

3.
The land snail genus Mandarina has undergone extensive radiation within the Bonin Islands in the west Pacific. The preferred above-ground vegetation heights of sympatric species were clearly different. They separated into arboreal, semi-arboreal, exposed ground and sheltered ground ecotypes. Shells of species with different ecotypes differ markedly, but shells of species with the same ecotype are very similar to each other. Shell morphologies of some phylogenetically distantly related species with the same ecotype were indistinguishable. Character evolution estimated parsimoniously using a phylogenetic tree suggests that the speciation among sympatric species is accompanied by ecological and morphological diversification. In addition, species coexistence of Mandarina is related to niche differentiation. The above findings suggest that ecological interactions among species contribute to the ecological and morphological diversification and radiation of these land snails in this depauperate environment.  相似文献   

4.
Body shape is predicted to differ among species for functional reasons and in relation to environmental niche and phylogenetic history. We quantified morphological differences in shape and size among 98.5% of the 129 species and all 21 genera of the Australo‐Papuan endemic myobatrachid frogs to test the hypothesis that habitat type predicts body shape in this radiation. We tested this hypothesis in a phylogenetic context at two taxonomic levels: across the entire radiation and within the four largest genera. Thirty‐four external measurements were taken on 623 museum specimens representing 127 species. Data for seven key environmental variables relevant to anurans were assembled for all Australian‐distributed species based on species' distributions and 131,306 locality records. The Australo‐Papuan myobatrachid radiation showed high diversity in adult body size, ranging from minute (15 mm snout–vent length) to very large species (92 mm), and shape, particularly sin relative limb length. Five main morphological and environmental summary variables displayed strong phylogenetic signal. There was no clear relationship between body size and environmental niche, and this result persisted following phylogenetic correction. For most species, there was a better match between environment/habitat and body shape, but this relationship did not persist following phylogenetic correction. At a broad level, species fell into three broad groups based on environmental niche and body shape: 1) species in wet habitats with relatively long limbs, 2) species in arid environments with relatively short limbs (many of which are forward or backward burrowers) and 3) habitat generalist species with a conservative body shape. However, these patterns were not repeated within the four largest genera ? Crinia, Limnodynastes, Pseudophryne and Uperoleia. Each of these genera displayed a highly conservative anuran body shape, yet individual species were distributed across the full spectrum of Australian environments. Our results suggest that phylogenetic legacy is important in the evolution of body size and shape in Australian anurans, but also that the conservative body plan of many frogs works well in a wide variety of habitats.  相似文献   

5.
Many species of climbing frog possess large disc-like digital pads, which facilitate adhesion. The consensus of earlier studies is that frogs depend on a wet adhesive mechanism, chiefly influenced by pad area and surface tension properties of the mediating adhesive fluid. The relationship between morphology, size and adhesion is of particular interest for tree frogs, because evolution of adhesive ability has facilitated niche expansion into arboreal habitats. If frogs are geometrically similar, and growth occurs isometrically, then mass will increase at a higher rate than toe-pad area, and an adhesive system directly dependent on area may be adversely affected. We investigated scaling of adhesive ability with ontogeny in seven species of hylid tree frog to test whether the responses to the challenges of maintaining adhesion with growth were sufficient to allow adult frogs to stick as effectively on smooth substrates as juvenile frogs. In all species, mass increased at a lower rate than expected with isometric growth. This was less pronounced in larger species, perhaps owing to the demands of locomotory modes such as jumping. In smaller hylids, this non-isometric increase in mass was sufficient to enable adult frogs to adhere as effectively as juveniles. In larger species, however, the ability of adult frogs to adhere was significantly lower than that of juveniles, despite evidence of increased toe-pad efficiency. Within all species adhesive forces increased at a greater rate than toe-pad area, suggestive of changes in the relative influence of the contributory components of the wet adhesive mechanism with growth.  相似文献   

6.
Most frog species show little resistance to evaporative water loss (EWL), but some arboreal species are known to have very high resistances. We measured EWL and cutaneous resistance to evaporation (Rc) in 25 species of frogs from northern Australia, including 17 species in the family Hylidae, six species in the Myobatrachidae, and one each in the Bufonidae and the Microhylidae. These species display a variety of ecological habits, including aquatic, terrestrial, and arboreal specialisations, with the complete range of habits displayed within just the one hylid genus, Litoria. The 25 species measured in this study have resistances that range from Rc=0 to 63.1. These include low values indistinguishable from a free water surface to high values typical of "waterproof" anuran species. There was a strong correlation between ecological habit and Rc, even taking phylogenetic relationships into account; arboreal species had the highest resistance, aquatic species tended to have little or no resistance, and terrestrial species tended to have resistance between those of arboreal and aquatic frogs. For one species, Litoria rubella, we found no significant changes in EWL along a 1,500-km aridity gradient. This study represents the strongest evidence to date of a link between ecological habits and cutaneous resistance to water loss among species of frogs.  相似文献   

7.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

8.
Why are there more species in the tropics than in temperate regions? In recent years, this long-standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time-for-speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.  相似文献   

9.
Relationships between some properties of frog calls and body size are widely recognized. However, generality across call components and diverse faunas, and sources of deviation, remain poorly tested. Using 116 east Australian frog species, we tested the relationship between three call traits and body size, and the effects of taxonomic family and calling habitat. Call dominant frequency (DF) has a highly significant negative relationship with size, whereas call duration and pulse rate do not. Frog families show the same slope of relationship between DF and size, but hylids call at significantly higher frequency relative to size. Within hylids, stream breeders call at significantly lower DF than pool breeders of comparable size – below the DF of stream noise in typical breeding habitat – a shift likely to enhance signal detection against background environmental noise. This contrasts with all previous observations from other regions that frogs call at high (even ultrasonic) frequency to avoid masking by stream noise.  相似文献   

10.
Living amphibians exhibit a diversity of ecologies, life histories, and species‐rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species‐level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well‐supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations.  相似文献   

11.
Molecular strategies in biological evolution of antimicrobial peptides   总被引:6,自引:0,他引:6  
Nicolas P  Vanhoye D  Amiche M 《Peptides》2003,24(11):1669-1680
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.  相似文献   

12.
Restriction site mutations and trnL(UAA)-trnF(GAA) intergenic spacer length variants in the chloroplast genome were used to investigate the phylogenetic relationships among 53 Australian and New Zealand Microseris populations and to assess their position within their primarily North American genus. The study was performed to enhance understanding of evolutionary processes within this unique example of intercontinental dispersal and subsequent adaptive radiation. A southern blot method using four-base restriction enzymes and fragment separation on polyacryamide gels resulted in 55 mutations of which 30 were potentially phylogenetically informative. Most mutations were small indels of <162 bp, 80% of which were <20 bp. The small indels were useful for phylogenetic reconstruction of Australasian Microseris as judged by the high consistency indexes. The results confirmed the monophyly of the Australian and New Zealand Microseris. The occurrence of “hard” basal polytomies in the most parsimonious trees indicated that rapid radiation has occurred early in the history of the taxon. The monophyly of M. lanceolata, which includes the self-incompatible ecotypes of the Australian mainland, was confirmed. Within this species three clades were found that reflect more geographic distribution than morphological entities, suggesting that migration and possibly introgression between different ecotypes, or parallel evolution of similar adaptations, has occurred. One of the three clades was supported by a 162-bp deletion in the trnL-trnF spacer, while a subgroup of this exhibited also a tandemly repeated trnF exon. The data were inconclusive about the monophyly of the second Australasian species, M. scapigera, which comprises the New Zealand, Tasmanian, and autofertile ecotypes of Australia.  相似文献   

13.
14.
Ecology and biomechanics play central roles in the generation of phenotypic diversity. When unrelated taxa invade a similar ecological niche, biomechanical demands can drive convergent morphological transformations. Thus, examining convergence helps to elucidate the key catalysts of phenotypic change. Gliding mammals are often presented as a classic case of convergent evolution because they independently evolved in numerous clades, each possessing patagia (“wing” membranes) that generate lift during gliding. We use phylogenetic comparative methods to test whether the skeletal morphologies of the six clades of extant gliding mammals demonstrate convergence. Our results indicate that glider skeletons are convergent, with glider groups consistently evolving proportionally longer, more gracile limbs than arborealists, likely to increase patagial surface area. Nonetheless, we interpret gliders to represent incomplete convergence because (1) evolutionary model-fitting analyses do not indicate strong selective pressures for glider trait optima, (2) the three marsupial glider groups diverge rather than converge, and (3) the gliding groups remain separated in morphospace (rather than converging on a single morphotype), which is reflected by an unexpectedly high level of morphological disparity. That glider skeletons are morphologically diverse is further demonstrated by fossil gliders from the Mesozoic Era, which possess unique skeletal characteristics that are absent in extant gliders. Glider morphologies may be strongly influenced by factors such as body size and attachment location of patagia on the forelimb, which can vary among clades. Thus, convergence in gliders appears to be driven by a simple lengthening of the limbs, whereas additional skeletal traits reflect nuances of the gliding apparatus that are distinct among different evolutionary lineages. Our unexpected results add to growing evidence that incomplete convergence is prevalent in vertebrate clades, even among classic cases of convergence, and they highlight the importance of examining form-function relationships in light of phylogeny, biomechanics, and the fossil record.  相似文献   

15.
We reassess the phylogenetic relationships of genera of hemiphractine hylid frogs (Marsupial Treefrogs) and discuss the evolution of several distinctive characters within this group using parsimony analysis. Fifty-one morphological and life-history characters were sampled from two species of Cryptobatrachus , three species of Flectonotus , 17 species of Gastrotheca , all five species of Hemiphractus , and one species of Stefania as the ingroup and three hyline, one phyllomedusine, and one pelodryadine species as outgroups. Our results support the mon-ophyly of Flectonotus, Cryptobatrachus , and Hemiphractus. Gastrotheca is paraphyletic with respect to Hemiphractus , dorsal pouches were lost in the ancestor of Hemiphractus. Direct development is a synapomorphy for Hemiphractinae and tadpoles were regained independently several times. These results stand in stark contrast to the prevailing paradigm regarding marsupial frog relationships.  相似文献   

16.
The frog genus Leptopelis is composed of ~50 species that occur across sub‐Saharan Africa. The majority of these frogs are typically arboreal; however, a few species have evolved a fossorial lifestyle. Most species inhabit lowland forests, but a few species have adapted to high elevations. Five species of Leptopelis occupy the Ethiopian highlands and provide a good opportunity to study the evolutionary transition from an arboreal to a fossorial lifestyle, as well as the diversification in this biodiversity hot spot. We sequenced 14 nuclear and three mitochondrial genes, and generated thousands of SNPs from ddRAD sequencing to study the evolutionary relationships of Ethiopian Leptopelis. The five species of highland Leptopelis form a monophyletic group, which diversified during the late Miocene and Pliocene. We found strong population structure in the fossorial species L. gramineus, with levels of genetic differentiation between populations similar to those found between arboreal species. This could indicate that L. gramineus is a complex of cryptic species. We propose that after the original colonization of the Ethiopian highlands by the ancestor of the L. gramineus group, episodes of vicariance fragmented the ancestral populations of this group. We also report the re‐evolution of arboreality in L. susanae, which evolved from a fossorial ancestor, a rare ecological switch in frogs that had previously been reported only once.  相似文献   

17.
18.
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.  相似文献   

19.
Hylid frog phylogeny and sampling strategies for speciose clades   总被引:3,自引:0,他引:3  
How should characters and taxa be sampled to resolve efficiently the phylogeny of ancient and highly speciose groups? We addressed this question empirically in the treefrog family Hylidae, which contains > 800 species and may be nonmonophyletic with respect to other anuran families. We sampled 81 species (54 hylids and 27 outgroups) for two mitochondrial genes (12S, ND1), two nuclear genes (POMC, c-myc), and morphology (144 characters) in an attempt to resolve higher-level relationships. We then added 117 taxa to the combined data set, many of which were sampled for only one gene (12S). Despite the relative incompleteness of the majority of taxa, the resulting trees placed all taxa in the expected higher-level clades with strong support, despite some taxa being > 90% incomplete. Furthermore, we found no relationship between the completeness of a taxon and the support (parsimony bootstrap or Bayesian posterior probabilities) for its localized placement on the tree. Separate analysis of the data set with the most taxa (12S) gives a somewhat problematic estimate of higher-level relationships, suggesting that data sets scored only for some taxa (ND1, nuclear genes, morphology) are important in determining the outcome of the combined analysis. The results show that hemiphractine hylids are not closely related to other hylids and should be recognized as a distinct family. They also show that the speciose genus Hyla is polyphyletic, but that its species can be arranged into three monophyletic genera. A new classification of hylid frogs is proposed. Several potentially misleading signals in the morphological data are discussed.  相似文献   

20.
We measured temperature preferences of 12 species of hylid frogs (Litoria and Cyclorana) from northern Australia in a laboratory thermal gradient. These species represented a range of ecological habitat use (aquatic, terrestrial, arboreal), adult body size (0.5-60 g), and cutaneous resistance to water loss (Rc=0.6-63.1 s cm-1). We found significant differences among species in selected skin temperature and gradient temperature but not in the variances of these measures (an index of precision of temperature selection). The species' differences correlated significantly with cutaneous resistance to water loss, with more-resistant frogs selecting higher skin and substrate temperatures in the thermal gradient, even after phylogenetic relationships are taken into account. Because cutaneous resistance to water loss also correlates with ecological habit (arboreal>terrestrial>aquatic), we suggest that their higher resistance to water loss allows arboreal and terrestrial species better ability to tolerate high temperatures, where growth or locomotory speed may be higher, without the associated risk of desiccation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号