共查询到20条相似文献,搜索用时 15 毫秒
1.
Bingbing Liu Richard J. Abbott Zhiqiang Lu Bin Tian Jianquan Liu 《Molecular ecology》2014,23(12):3013-3027
Despite the well‐known effects that Quaternary climate oscillations had on shaping intraspecific diversity, their role in driving homoploid hybrid speciation is less clear. Here, we examine their importance in the putative homoploid hybrid origin and evolution of Ostryopsis intermedia, a diploid species occurring in the Qinghai‐Tibet Plateau (QTP), a biodiversity hotspot. We investigated interspecific relationships between this species and its only other congeners, O. davidiana and O. nobilis, based on four sets of nuclear and chloroplast population genetic data and tested alternative speciation hypotheses. All nuclear data distinguished the three species clearly and supported a close relationship between O. intermedia and the disjunctly distributed O. davidiana. Chloroplast DNA sequence variation identified two tentative lineages, which distinguished O. intermedia from O. davidiana; however, both were present in O. nobilis. Admixture analyses of genetic polymorphisms at 20 SSR loci and sequence variation at 11 nuclear loci and approximate Bayesian computation (ABC) tests supported the hypothesis that O. intermedia originated by homoploid hybrid speciation from O. davidiana and O. nobilis. We further estimated that O. davidiana and O. nobilis diverged 6–11 Ma, while O. intermedia originated 0.5–1.2 Ma when O. davidiana is believed to have migrated southward, contacted and hybridized with O. nobilis possibly during the largest Quaternary glaciation that occurred in this region. Our findings highlight the importance of Quaternary climate change in the QTP in causing hybrid speciation in this important biodiversity hotspot. 相似文献
2.
Hong‐Liang Lu Chun‐Xia Xu Yuan‐Ting Jin Jean‐Marc Hero Wei‐Guo Du 《Ecology and evolution》2018,8(1):645-654
Body size is directly linked to key life history traits such as growth, fecundity, and survivorship. Identifying the causes of body size variation is a critical task in ecological and evolutionary research. Body size variation along altitudinal gradients has received considerable attention; however, the underlying mechanisms are poorly understood. Here, we compared the growth rate and age structure of toad‐headed lizards (Phrynocephalus vlangalii) from two populations found at different elevations in the Qinghai‐Tibetan Plateau. We used mark‐recapture and skeletochronological analysis to identify the potential proximate causes of altitudinal variation in body size. Lizards from the high‐elevation site had higher growth rates and attained slightly larger adult body sizes than lizards from the low‐elevation site. However, newborns produced by high‐elevation females were smaller than those by low‐elevation females. Von Bertalanffy growth estimates predicted high‐elevation individuals would reach sexual maturity at an earlier age and have a lower mean age than low‐elevation individuals. Relatively lower mean age for the high‐elevation population was confirmed using the skeletochronological analysis. These results support the prediction that a larger adult body size of high‐elevation P. vlangalii results from higher growth rates, associated with higher resource availability. 相似文献
3.
Yongshuai Sun Richard J. Abbott Lili Li Long Li Jiabin Zou Jianquan Liu 《Molecular ecology》2014,23(2):343-359
Hybridization and introgression can play an important role in speciation. Here, we examine their roles in the origin and evolution of Picea purpurea, a diploid spruce species occurring on the Qinghai–Tibet Plateau (QTP). Phylogenetic relationships and ecological differences between this species and its relatives, P. schrenkiana, P. likiangensis and P. wilsonii, are unclear. To clarify them, we surveyed sequence variation within and between them for 11 nuclear loci, three chloroplast (cp) and two mitochondrial (mt) DNA fragments, and examined their ecological requirements using ecological niche modelling. Initial analyses based on 11 nuclear loci rejected a close relationship between P. schrenkiana and P. purpurea. BP&P tests and ecological niche modelling indicated substantial divergence between the remaining three species and supported the species status of P. purpurea, which contained many private alleles as expected for a well‐established species. Sequence variation for cpDNA and mtDNA suggested a close relationship between P. purpurea and P. wilsonii, while variation at the nuclear se1364 gene suggested P. purpurea was more closely related to P. likiangensis. Analyses of genetic divergence, Bayesian clustering and model comparison using approximate Bayesian computation (ABC) of nuclear (nr) DNA variation all supported the hypothesis that P. purpurea originated by homoploid hybrid speciation from P. wilsonii and P. likiangensis. The ABC analysis dated the origin of P. purpurea at the Pleistocene, and the estimated hybrid parameter indicated that 69% of its nuclear composition was contributed by P. likiangensis and 31% by P. wilsonii. Our results further suggested that during or immediately following its formation, P. purpurea was subject to organelle DNA introgression from P. wilsonii such that it came to possess both mtDNA and cpDNA of P. wilsonii. The estimated parameters indicated that following its origin, P. purpurea underwent an expansion during/after the largest Pleistocene glaciation recorded for the QTP. 相似文献
4.
The Qinghai–Tibet Plateau (QTP) plays an important role in avian diversification. To reveal the relationship between the QTP uplift and avian diversification since the Late Cenozoic, here, we analyzed the phylogenetic relationship and biogeographical pattern of the genus Tetraogallus (Galliformes, Phasianidae) and the probable factors of speciation in the period of the QTP uplift inferred from concatenated data of four nuclear and five mitochondrial genes using the method of the Bayesian inference. Phylogenetic analysis indicated that T. himalayensis had a close relationship with T. altaicus and conflicted with the previous taxonomy of dark‐bellied and white‐bellied groups. The molecular clock showed that the speciation of Tetraogallus was profoundly affected by the uplift of the QTP and glacial oscillations. Biogeographic analysis suggested that the extant snowcocks originated from the QTP, and the QTP uplift and glacial oscillations triggered the diversification of Tetraogallus ancestor. Specifically, the uplift of the mountain provided a prerequisite for the colonization of snowcocks Tetraogallus as a result of the collision between the Indian and the Arab plates and the Eurasian plate, in which ecological isolation (the glacial and interglacial periods alternate) and geographical barrier had accelerated the Tetraogallus diversification process. Interestingly, we discovered hybrids between T. tibetanus and T. himalayensis for the first time and suggested that T. tibetanus and T. himalayensis hybridized after a second contact during the glacial period. Here, we proposed that the hybrid offspring was the ancestor of the T. altaicus. In conclusion, the uplift of QTP and glacial oscillations triggered the snowcocks colonization, and then, isolation and introgression hybridization promoted diversification. 相似文献
5.
Shaolin Xu Yangliang Gu Juzhi Hou Yongqin Liu Henri J. Dumont Bo‐Ping Han 《Ecology and evolution》2018,8(10):5069-5078
Daphnia on the Tibetan Plateau has been little studied, and information on species diversity and biogeography is lacking. Here, we conducted a 4‐year survey using the barcoding fragment of the mitochondrial COI gene to determine the distribution and diversity of Daphnia species found across the Plateau. Our results show that species richness is higher than previously thought, with total described and provisional species number doubling from 5 to 10. Six of the taxonomic units recovered by DNA taxonomy agreed well with morphology, but DNA barcoding distinguished three clades each for the D. longispina (D. galeata, D. dentifera, and D. longispina) and D. pulex (D. pulex, D. cf. tenebrosa, and D. pulicaria) complexes. The sequence divergence between congeneric species varied within a large range, from 9.25% to 30.71%. The endemic D. tibetana was the most common and widespread species, occurring in 12 hyposaline to mesosaline lakes. The lineage of D. longispina is the first confirmed occurrence in west Tibet. 相似文献
6.
7.
R. Ghahramanzadeh G. Esselink L. P. Kodde H. Duistermaat J. L. C. H. van Valkenburg S. H. Marashi M. J. M. Smulders C. C. M. van de Wiel 《Molecular ecology resources》2013,13(1):21-31
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH‐psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. 相似文献
8.
High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides, Odoribacter, and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles. 相似文献
9.
10.
Quiterie Duron Jaime E. Jiménez Pablo M. Vergara Gerardo E. Soto Marlene Lizama Ricardo Rozzi 《Austral ecology》2018,43(1):25-34
Animals facing seasonal food shortage and habitat degradation may adjust their foraging behaviour to reduce intraspecific competition. In the harsh environment of the world's southernmost forests in the Magellanic sub‐Antarctic ecoregion in Chile, we studied intersexual foraging differences in the largest South American woodpecker species, the Magellanic Woodpecker (Campephilus magellanicus). We assessed whether niche overlap between males and females decrease when food resources are less abundant or accessible, that is, during winter and in secondary forests, compared to summer and in old‐growth forests, respectively. We analysed 421 foraging microhabitat observations from six males and six females during 2011 and 2012. As predicted, the amount of niche overlap between males and females decreased during winter, when provisioning is more difficult. During winter, males and females (i) used trees with different diameter at breast height (DBH); (ii) fed in trunk sections with different diameters; and (iii) fed at different heights on tree trunks or branches. Vertical niche partitioning between sexes was found in both old‐growth and secondary forests. Such a niche partitioning during winter may be a seasonal strategy to avoid competition between sexes when prey resources are less abundant or accessible. Our results suggest that the conservation of this forest specialist, dimorphic and charismatic woodpecker species requires considering differences in habitat use between males and females. 相似文献
11.
12.
13.
Sandeep Sen Kadukothanahally Nagaraju Shivaprakash Neelavara A. Aravind Gudasalamani Ravikanth Selvadurai Dayanandan 《Ecology and evolution》2016,6(18):6510-6523
Conservation managers and policy makers are often confronted with a challenging dilemma of devising suitable strategies to maintain agricultural productivity while conserving endemic species that at the early stages of becoming pests of agricultural crops. Identification of environmental factors conducive to species range expansion for forecasting species distribution patterns will play a central role in devising management strategies to minimize the conflict between the agricultural productivity and biodiversity conservation. Here, we present results of a study that predicts the distribution of Indrella ampulla, a snail endemic to the Western Ghats biodiversity hotspot, which is becoming a pest in cardamom (Ellettaria cardamomum) plantations. We determined the distribution patterns and niche overlap between I. ampulla and Ellettaria cardamomum using maximum entropy (MaxEnt) niche modeling techniques under current and future (2020–2080) climatic scenarios. The results showed that climatic (precipitation of coldest quarter and isothermality) and soil (cation exchange capacity of soil [CEC]) parameters are major factors that determine the distribution of I. ampulla in Western Ghats. The model predicted cardamom cultivation areas in southern Western Ghats are highly sensitive to invasion of I. ampulla under both present and future climatic conditions. While the land area in the central Western Ghats is predicted to become unsuitable for I. ampulla and Ellettaria cardamomum in future, we found 71% of the Western Ghats land area is suitable for Ellettaria cardamomum cultivation and 45% suitable for I. ampulla, with an overlap of 35% between two species. The resulting distribution maps are invaluable for policy makers and conservation managers to design and implement management strategies minimizing the conflicts to sustain agricultural productivity while maintaining biodiversity in the region. 相似文献
14.
Strix (Strigidae) is a worldwide genus of 17 owl species typical of forested habitats, including Rusty‐barred Owls (S. hylophila), Chaco Owls (S. chacoensis), and Rufous‐legged Owls (S. rufipes) in South America. These species are distributed allopatrically, but the ecological traits that determine their distributions remain largely unknown and their phylogenetic relationships are unclear. We used species distribution models (SDMs) to identify variables explaining their distribution patterns and test hypotheses about ecological divergence and conservatism based on niche overlap analysis. For Rusty‐barred Owls and Chaco Owls, climatic factors related to temperature played a major role, whereas a rainfall variable was more important for Rufous‐legged Owls. When niche overlaps were compared, accounting for regional similarities in the habitat available to each species, an ecological niche divergence process was supported for Chaco Owl‐Rusty‐barred Owl and Chaco Owl‐Rufous‐legged Owl, whereas a niche conservatism process was supported for Rusty‐barred Owl‐Rufous‐legged Owl. Different ecological requirements support current species delimitation, but they are in disagreement with the two main hypotheses currently envisaged about their phylogenetic relationships (Chaco Owls as the sister taxa of either Rufous‐legged Owls or Rusty‐barred Owls) and support a new phylogenetic hypothesis (Rufous‐legged Owls as sister taxa of Rusty‐barred Owls). Our findings suggest that speciation of Rusty‐barred Owls and Rufous‐legged Owls was a vicariant event resulting from Atlantic marine transgressions in southern South America in the Miocene, but their niche was conserved because habitat changed little in their respective ranges. In contrast, Chaco Owls diverged ecologically from the other two species as a result of their adaptations to the habitat they currently occupy. Ecological and historical approaches in biogeography can be embedded to explain distribution patterns, and results provided by SDMs can be used to infer historical and ecological processes in an integrative way. 相似文献
15.
Josée‐Anne Otis Dan Thornton Linda Rutledge Dennis L. Murray 《Diversity & distributions》2017,23(5):529-539
16.
Huai Chen Qiu'an Zhu Changhui Peng Ning Wu Yanfen Wang Xiuqin Fang Hong Jiang Wenhua Xiang Jie Chang Xiangwen Deng Guirui Yu 《Global Change Biology》2013,19(1):19-32
Sources of methane (CH4) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH4, such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH4 emissions from rice paddies, natural wetlands, and lakes in China were first reviewed and then reestimated based on the review itself. Total emissions from the three CH4 sources were 11.25 Tg CH4 yr?1 (ranging from 7.98 to 15.16 Tg CH4 yr?1). Among the emissions, 8.11 Tg CH4 yr?1 (ranging from 5.20 to 11.36 Tg CH4 yr?1) derived from rice paddies, 2.69 Tg CH4 yr?1 (ranging from 2.46 to 3.20 Tg CH4 yr?1) from natural wetlands, and 0.46 Tg CH4 yr?1 (ranging from 0.33 to 0.59 Tg CH4 yr?1) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern China the greatest overall source of CH4, accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH4 emissions recorded within Qinghai‐Tibetan Plateau peatlands. Total CH4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH4, but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH4 emissions deriving from wetlands and lakes in China. 相似文献
17.
Rafael Félix de Magalhães Priscila Lemes Arley Camargo Ubirajara Oliveira Reuber Albuquerque Brandão Hans Thomassen Paulo Christiano de Anchietta Garcia Felipe Sá Fortes Leite Fabrício Rodrigues Santos 《Ecology and evolution》2017,7(21):8812-8828
Protected areas (PAs) are essential for biodiversity conservation, but their coverage is considered inefficient for the preservation of all species. Many species are subdivided into evolutionarily significant units (ESUs) and the effectiveness of PAs in protecting them needs to be investigated. We evaluated the usefulness of the Brazilian PAs network in protecting ESUs of the critically endangered Pithecopus ayeaye through ongoing climate change. This species occurs in a threatened mountaintop ecosystem known as campos rupestres. We used multilocus DNA sequences to delimit geographic clusters, which were further validated as ESUs with a coalescent approach. Ecological niche modeling was used to estimate spatial changes in ESUs’ potential distributions, and a gap analysis was carried out to evaluate the effectiveness of the Brazilian PAs network to protect P. ayeaye in the face of climate changes. We tested the niche overlap between ESUs to gain insights for potential management alternatives for the species. Pithecopus ayeaye contains at least three ESUs isolated in distinct mountain regions, and one of them is not protected by any PA. There are no climatic niche differences between the units, and only 4% of the suitable potential area of the species is protected in present and future projections. The current PAs are not effective in preserving the intraspecific diversity of P. ayeaye in its present and future range distributions. The genetic structure of P. ayeaye could represent a typical pattern in campos rupestres endemics, which should be considered for evaluating its conservation status. 相似文献
18.
Merremia peltata is a species with uncertain status in the island nations of the Pacific region. It has been designated introduced and invasive in some countries whereas it is considered native in others. Recent increase in its abundance across some island landscapes have led to calls for its designation as an invasive species of environmental concern with biological control being suggested as a control strategy. Climate change will add to the complications of managing this species since changes in climate will influence its range limits. In this study, we develop a process‐oriented niche model of M. peltata using CLIMEX to investigate the impacts of climate change on its potential distribution. Information on the climatic requirements of M. peltata and its current geographic distribution were used to calibrate the model. The results indicate that under current climate, 273,132 km2 of the land area in the region is climatically unsuitable or marginal for M. peltata whereas 664,524 km2 is suitable to highly suitable. Under current climate, areas of climatic suitability for M. peltata were identified on the archipelagos of Fiji, Papua New Guinea, Solomon Islands and Vanuatu. By the end of the century, some archipelagos like Fiji, Hawaii, New Caledonia and Vanuatu will probably become more suitable while PNG and Solomon Islands become less suitable for M. peltata. The results can be used to inform biosecurity planning, management and conservation strategies on islands. 相似文献
19.
20.