首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Odorant‐binding proteins (OBPs) are believed to play an important role in olfactory recognition. In this study, expression pattern and fluorescence binding characteristics of MaltOBP13 from the Japanese pine sawyer beetle, Monochamus alternatus Hope, were investigated via qPCR analysis of MaltOBP13 mRNA level and binding assay of MaltOBP13 and ligands. qPCR monitoring indicated MaltOBP13 mainly expressed in newly emerged males, particularly highly expressed in the last abdominal segment of males, and the expression level was significantly higher in 13‐day‐old mated adults than those of other stages. To further understand the function of the MaltOBP13 protein in odorant reception, the binding affinity of recombinant MaltOBP13 to ligands was tested by fluorescence binding assays with N‐phenyl‐1‐naphthylamine as a fluorescent probe. The results of this assay indicated that MaltOBP13 exhibited a high binding affinity for pine volatiles and binding capacity was higher in acidic conditions than in neutral environment, indicating a possible role in finding host plants.  相似文献   

2.
3.
Chemoreception is a key feature in selection of host plants by insects. We performed a preliminary functional characterization of olfactory proteins isolated from an antennal cDNA library of Monochamus alternatus. We identified four olfactory genes, including two encoding putative classic odorant‐binding proteins (OBPs) and two encoding minus‐C OBPs. We expressed two of the four OBPs, MaltOBP3 and MaltOBP5, in a bacterial system and assessed their ligand specificity by measuring the competitive binding of fluorescent probe, N‐phenyl‐1‐naph‐thylamine, in the presence of 17 volatile beetle‐ or host‐plant‐related ligands. The results indicated that although MaltOBP3 and MaltOBP5 bound a distinctly different group of competitors, both had relatively high binding affinities (Ki < 20 μm ) for certain compounds. The differences in their binding affinities towards host‐plant ligands suggest the roles of MaltOBP3 and MaltOBP5 in host‐plant selection.  相似文献   

4.
Currently, odorant‐binding proteins (OBPs) are considered the first filter for olfactory information for insects and constitute an interesting target for pest control. Thus, an OBP (HeleOBP) from the scarab beetle Hylamorpha elegans (Burmeister) was identified, and ligand‐binding assays based on fluorescence and in silico approaches were performed, followed by a simulated binding assay. Fluorescence binding assays showed slight binding for most of the ligands tested, including host‐plant volatiles. A high binding affinity was obtained for β‐ionone, a scarab beetle‐related compound. However, the binding of its analogue α‐ionone was weaker, although it is still considered good. On the other hand, through a three‐dimensional model of HeleOBP constructed by homology, molecular docking was carried out with 29 related ligands to the beetle. Results expressed as free binding energy and fit quality (FQ) indicated strong interactions of sesquiterpenes and terpenoids (α‐ and β‐ionone) with HeleOBP as well as some aromatic compounds. Residues such as His102, Tyr105 and Tyr113 seemed to participate in the interactions previously mentioned. Both in silico scores supported the experimental affinity for the strongest ligands. Therefore, the activity of α‐ionone, β‐ionone and 2‐phenyl acetaldehyde at antennal level was studied using electroantenography (EAG). Results showed that the three ligands are electrophysiologically active. However, an aliquot of β‐ionone (represented by 3.0 ng) elicited stronger EAG responses in antennae of males than of females. Finally, the role of these ligands as potential semiochemicals for H. elegans is discussed.  相似文献   

5.
The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant‐binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant‐binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real‐time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant‐binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans‐caryophelle, farnesene, and cis‐3‐Hexen‐1‐ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild‐type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α‐helical content.  相似文献   

6.
7.
8.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   

9.
10.
Sitodiplosis mosellana, a periodic but devastating wheat pest, relies on wheat spike volatiles as a cue in selecting hosts for oviposition. Insect odorant‐binding proteins (OBPs) are thought to play essential roles in filtering, binding and transporting hydrophobic odorant molecules to specific receptors. To date, the molecular mechanisms underlying S. mosellana olfaction are poorly understood. Here, three S. mosellana antenna‐specific OBP genes, SmosOBP11, 16 and 21, were cloned and bacterially expressed. Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were investigated using fluorescence competitive binding assays. Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily. Ligand‐binding analysis showed that all three SmosOBPs preferentially bound alcohol, ester and ketone compounds, and SmosOBP11 and 16 also selectively bound terpenoid compounds. In particular, the three SmosOBPs had high binding affinities (Ki < 20 μmol/L) to 3‐hexanol and cis‐3‐hexenylacetate that elicited strong electroantennogram (EAG) response from female antennae. In addition, SmosOBP11 displayed significantly higher binding (Ki < 8 μmol/L) than SmosOBP16 and 21 to 1‐octen‐3‐ol, D‐panthenol, α‐pinene and heptyl acetate which elicited significant EAG response, suggesting that SmosOBP11 plays a major role in recognition and transportation of these volatiles. These findings have provided important insight into the molecular mechanism by which S. mosellana specifically recognizes plant volatiles for host selection, and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.  相似文献   

11.
Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC‐MS to identify candidate binding ligands. We optimized this method using ABA–PYL interactions and show that ABA co‐purifies with wild‐type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 μm , which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37 START domain‐related proteins, which resulted in the identification of ligands that co‐purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co‐purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.  相似文献   

12.
The ability to modulate olfactory sensitivity is necessary to detect chemical gradients and discriminate among a multitude of odor stimuli. Desensitization of odorant receptors has been postulated to occur when arrestins prevent the activation of downstream second messengers. A paucity of in vivo data on olfactory desensitization prompts use of Drosophila melanogaster genetics to investigate arrestins' role in regulating olfactory signaling pathways. Physiological analysis of peripheral olfactory sensitivity reveals decreased responsiveness to a host of chemically distinct odorants in flies deficient for arrestin1 (arr1), arrestin2 (arr2), or both. These phenotypes are manifest in odorant‐ and dose‐ dependent fashions. Additionally, mutants display altered adaptive properties under a prolonged exposure paradigm. Behaviorally, arr1 mutants are impaired in olfactory‐based orientation towards attractive odor sources. As the olfactory deficits vary according to chemical identity and concentration, they indicate that a spectrum of arrestin activity is essential for odor processing depending upon the particular olfactory pathway involved. Arrestin mutant phenotypes are hypothesized to be a consequence of down‐regulation of olfactory signaling to avoid cellular excitotoxicity. Importantly, phenotypic rescue of olfactory defects in arr11 mutants is achieved through transgenic expression of wild‐type arr1. Taken together, these data clearly indicate that arrestins are required in a stimulus‐specific manner for wild type olfactory function and add another level of complexity to peripheral odor coding mechanisms that ultimately impact olfactory behavior. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

13.
Electroantennogram (EAG), Y‐tube olfactometer, and wind tunnel bioassays were conducted to test the electrophysiological and behavioral responses of Cryptorrhynchus lapathi L. (Coleoptera: Curculionidae) to six individual volatiles and seven essential oils (compounded volatiles). The aim of this study was to select effective plant compounds that can be used in the development of semiochemical‐based push–pull methods for the control of this harmful insect. Male and female C. lapathi displayed strong EAG responses to linoleic acid, α‐pinene, (Z)‐3‐hexen‐1‐ol, geraniol, turpentine oil, and salicylaldehyde. Y‐tube olfactometer assays indicated that salicylaldehyde and α‐pinene elicited strong repellent effects on female C. lapathi. Linoleic acid and (Z)‐3‐hexen‐1‐ol showed greater luring effects on male and female C. lapathi compared with the control. Turpentine oil was stronger repellent, and geraniol showed stronger luring effects on male C. lapathi than the control. Wind tunnel assays with both male and female C. lapathi indicated that salicylaldehyde, α‐pinene, and turpentine oil elicited repellent effects compared with the control. Linoleic acid, (Z)‐3‐hexen‐1‐ol, and geraniol were stronger lures of both male and female C. lapathi than the control. These results provide a basis for the further development of C. lapathi luring and repellent agents.  相似文献   

14.
15.
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein‐coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium‐binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi‐aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.  相似文献   

16.
Sex‐ and age‐related differences in cognitive abilities are frequently reported. However, the sex‐ and age‐related differences in dog olfaction due to biological system are still poorly understood. We examined c‐fos expression in dog olfactory bulbs by immunohistochemistry approaches. The c‐fos is mainly expressed in the olfactory glomerular layer (GL), mitral cell layer (ML) and granule cell layer (GRL). We found that a higher density of c‐fos‐positive cells could be detected in the ML of olfactory bulbs of adult female dogs compared with that in males and the c‐fos‐positive cells in females' olfactory bulbs are more distinct. Sex‐related differences in c‐fos expression also appeared in the GL of olfactory bulbs in juvenile dogs. We also discovered that the density of c‐fos‐positive cells in the GRL of adult dogs was much higher than that in the GRL of juvenile dogs. Our results indicate that cells in the olfactory bulbs of female dogs are more active than those in males and female dogs may have much stronger ability for long‐time memory of odours than male dogs. Furthermore, our results also suggest that adult dogs may have much stronger ability for long‐time memory of odours and can deal with more complicated odour information than juvenile dogs.  相似文献   

17.
In adult rats, repeated exposure to an odorant, in absence of any experimentally delivered reinforcement, leads to a drastic decrease in mitral/tufted (M/T) cell responsiveness, not only for the familiar odor but also for other novel odors. In the present study, using two different and complementary in situ hybridization methods, we analyzed the effect of familiarization with an odorant on c‐fos and arg 3.1 mRNA expression levels, and we examined the odor specificity of this effect. Odor exposure induces a specific increase in c‐fos and arg 3.1 expression in some particular olfactory bulb quadrants. Previous familiarization with the test odor results in a decreased expression of both IEGs in these quadrants, leading to the alteration of the odor‐specific pattern of c‐fos and arg 3.1 expression. In contrast, this odor‐specific pattern is not affected when different odors are used for familiarization and test. Similarly, an odor‐specific familiarization effect leading to a reduced c‐fos and arg 3.1 expression was also detected in the cingulate cortex and in the anterior piriform cortex. These results support our hypothesis that the decrease in M/T cell responsiveness following a preceding familiarization with an odorant may be related to a particular form of synaptic plasticity involving changes at the genomic level, and reveals further insight in olfactory information processing and the cellular mechanisms underlying familiarization in the olfactory system. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 61–72, 2002  相似文献   

18.
A full‐length cDNA of a sigma‐like glutathione S‐transferase (GST) was identified from Hyriopsis cumingii (HcGSTS). The deduced amino acid sequence of HcGSTS was found to comprise 203 amino acid residues and to contain the distinct highly conserved glutathione binding site of N‐terminal and the relatively diverse substrate binding site of C‐terminal. Alignment analysis and phylogenetic relationship suggested that the HcGSTS is a sigma‐class GST. The mRNA of HcGSTS was constitutively expressed in all tested tissues, the strongest expression being in the hepatopancreas. The mRNA expression of HcGSTS was significantly up‐regulated (P < 0.05) in all assessed tissues after stimulation of the mussels with peptidoglycan (PGN) and LPS, the only exception being when the gills were challenged with PGN. The expression of HcGSTS mRNA in kidney and foot was also significantly up‐regulated (P < 0.05) by microcystin‐LR. Recombinant HcGSTS exhibited high activity towards the substrate 1‐chloro‐2,4‐dinitrobenzene. The optimal pH was 8.0 and temperature 35 °C.  相似文献   

19.
20.
Two high-quality cDNA libraries were constructed from female and male antennae of the cotton bollworm Helicoverpa armigera (Hübner). The titers were approximately 2.0 × 106 pfu/ml for females and 2.3 × 106 pfu/ml for males, and this complies with the test requirement. From the libraries, 1750 male ESTs and 1640 female ESTs were sequenced and further analyzed. We identified 15 olfactory genes (12 are new), and 14 of them have the characteristic six conserved cysteine residues. With the exception of OBP9, all the genes were classified as classical OBP genes. By alignment and cluster analysis, the 14 classical OBPs were divided into pheromone binding protein (PBP) genes, odorant binding protein (OBP) genes, general odorant binding protein 1 (GOBP1) genes, general odorant binding protein 2 (GOBP2) genes and antennae binding protein (ABP) genes. Among these genes, we obtained three PBP genes (PBP1–PBP3) including two new PBP genes, one new ABP gene, nine new OBP genes (OBP1–OBP9), one known GOBP1 gene and one known GOBP2 gene. Furthermore, the expression patterns of these 14 classical OBP genes were investigated in various tissues by real-time quantitative polymerase chain reaction (qPCR). The results indicated that some OBP genes are expressed differently in different sexes and tissues, but most of them are highly expressed in antennae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号