首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-coupled receptor kinase 2 (GRK2) is a serine/theorinine kinase that phosphorylates and desensitizes agonist-bound G protein-coupled receptors. GRK2 is increased in expression and activity in lymphocytes and vascular smooth muscle (VSM) in human hypertension and animal models of the disease. Inhibition of GRK2 using the carboxyl-terminal portion of the protein (GRK2ct) has been an effective tool to restore compromised beta-adrenergic receptor (AR) function in heart failure and improve outcome. A well-characterized dysfunction in hypertension is attenuation of betaAR-mediated vasodilation. Therefore, we tested the role of inhibition of GRK2 using GRK2ct or VSM-selective GRK2 gene ablation in a renal artery stenosis model of elevated blood pressure (BP) [the two-kidney, one-clip (2K1C) model]. Use of the 2K1C model resulted in a 30% increase in conscious BP, a threefold increase in plasma norepinephrine levels, and a 50% increase in VSM GRK2 mRNA levels. BP remained increased despite VSM-specific GRK2 inhibition by either GRK2 knockout (GRK2KO) or peptide inhibition (GRK2ct). Although betaAR-mediated dilation in vivo and in situ was enhanced, alpha(1)AR-mediated vasoconstriction was also increased. Further pharmacological experiments using alpha(1)AR antagonists revealed that GRK2 inhibition of expression (GRK2KO) or activity (GRK2ct) enhanced alpha(1D)AR vasoconstriction. This is the first study to suggest that VSM alpha(1D)ARs are a GRK2 substrate in vivo.  相似文献   

2.
The tone of vascular smooth muscle cells is a primary determinant of the total peripheral vascular resistance and hence the arterial blood pressure. Most forms of hypertension ultimately result from an increased vascular tone that leads to an elevated total peripheral resistance. Regulation of vascular resistance under normotensive and hypertensive conditions involves multiple mediators, many of which act through G protein-coupled receptors on vascular smooth muscle cells. Receptors that mediate vasoconstriction couple with the G-proteins G(q)-G11 and G12-G13 to stimulate phosphorylation of myosin light chain (MLC) via the Ca2+/MLC kinase- and Rho/Rho kinase-mediated signaling pathways, respectively. Using genetically altered mouse models that allow for the acute abrogation of both signaling pathways by inducible Cre/loxP-mediated mutagenesis in smooth muscle cells, we show that G(q)-G11-mediated signaling in smooth muscle cells is required for maintenance of basal blood pressure and for the development of salt-induced hypertension. In contrast, lack of G12-G13, as well as of their major effector, the leukemia-associated Rho guanine nucleotide exchange factor (LARG), did not alter normal blood pressure regulation but did block the development of salt-induced hypertension. This identifies the G12-G13-LARG-mediated signaling pathway as a new target for antihypertensive therapies that would be expected to leave normal blood pressure regulation unaffected.  相似文献   

3.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

4.
Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 μM) or Rho kinase (fasudil, 10 μM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.  相似文献   

5.
We previously reported that small mesenteric arteries from hypertensive rats have increased NOS-derived H(2)O(2) and reduced NO/cGMP signaling. We hypothesized that antihypertensive therapy lowers blood pressure through a tetrahydrobiopterin (BH(4))-dependent mechanism restoring NO/cGMP signaling and endothelial NOS (NOS3; eNOS) phosphorylation in small arteries. To test this hypothesis, small mesenteric arteries from normotensive rats (NORM), angiotensin II-infused rats (ANG), ANG rats with triple therapy (reserperine, hydrochlorothiazide, and hydralazine), or ANG rats with oral BH(4) therapy were studied. Both triple therapy and oral BH(4) therapy attenuated the rise in systolic blood pressure in ANG rats and restored NO/cGMP signaling in small arteries similarly. Triple therapy significantly increased vascular BH(4) levels and BH(4)-to-BH(2) ratio similar to ANG rats with BH(4) supplementation. Furthermore, triple therapy (but not oral BH(4) therapy) significantly increased GTP cyclohydrolase I (GTPCH I) activity in small arteries without a change in expression. NOS3 phosphorylation at Ser1177 was reduced in small arteries from ANG compared with NORM, while NOS3 phosphorylation at Ser633 and Thr495 were similar in ANG and NORM. NOS3 phosphorylation at Ser1177 was restored with triple therapy or oral BH(4) in ANG rats. In conclusion, antihypertensive therapy regulates NO/cGMP signaling in small arteries through increasing BH(4) levels and NOS3 phosphorylation at Ser1177.  相似文献   

6.
The generation of the Lew.Tg(mRen2) congenic hypertensive rat strain, developed through a backcross of the hypertensive (mRen2)27 transgenic rat with normotensive Lewis rats, provides a new model by which primary hypertension can be studied without the genetic variability found in the original strain. The purpose of this study was to characterize the Lew.Tg(mRen2) rats by dually investigating the effects of type 1 angiotensin II (ANG II) receptor (AT(1)) blockade and angiotensin-converting enzyme (ACE) activity inhibition on the ANG-(1-7)/ACE2 axis of the renin-angiotensin system in this new hypertensive model. The control of blood pressure elicited by 12-day administration of either lisinopril (mean difference change = 92 +/- 2, P < 0.05) or losartan (mean difference change = 69 +/- 2, P < 0.05) was associated with 54% and 33% increases in cardiac ACE2 mRNA and 54% and 43% increases in cardiac ACE mRNA, respectively. Lisinopril induced a 3.1-fold (P < 0.05) increase in renal cortical expression of ACE2, whereas losartan increased ACE2 mRNA 3.5-fold (P < 0.05). Both treatment regimens increased renal ACE mRNA 2.6-fold (P < 0.05). The two therapies augmented ACE2 protein activity, as well as increased cardiac and renal AT(1) receptor mRNAs. ACE inhibition reduced plasma ANG II levels (81%, P < 0.05) and increased plasma ANG-(1-7) (265%, P < 0.05), whereas losartan had no effect on the peptides. In contrast with what had been shown in normotensive rats, ACE inhibition decreased renal ANG II excretion and transiently decreased ANG-(1-7) excretion, whereas losartan treatment was associated with a consistent decrease in ANG-(1-7) urinary excretion rates. In response to the treatments, the expression of both renal cortical renin and angiotensinogen mRNAs was significantly augmented. The paradoxical effects of blockade of ANG II synthesis and activity on urinary excretion rates of the peptides and plasma angiotensins levels suggest that, in Lew.Tg(mRen2) congenic rats, a failure of compensatory ACE2 and ANG-(1-7)-dependent vasodepressor mechanisms may contribute both to the development and progression of hypertension driven by increased formation of endogenous ANG II.  相似文献   

7.
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.  相似文献   

8.
Although IGF-II activating the IGF-II receptor signaling pathway has been found to stimulate cardiomyocyte hypertrophy, the role of IGF-II in cardiac cell apoptosis remains unclear. This study aimed to identify the roles of IGF-II and/or IGF-II receptors (IGF-II/IIR) in cardiomyoblast apoptosis and in hypertensive rat hearts with abdominal aorta ligation. Cultured rat heart-derived H9c2 cardiomyoblasts and excised hearts from Sprague-Dawley rats with 0- to 20-day complete abdominal aorta ligation, a model of ANG II elevation and hypertension, were used. IGF-II/IIR expression, caspase activity, DNA fragmentation, and apoptotic cells were measured by RT-PCR, Western blot, agarose gel electrophoresis, and TUNEL assay following various combinations of ANG II, IGF-II/IIR antibody, CsA (calcineurin inhibitor), SP-600125 (JNK inhibitor), SB-203580 (p38 inhibitor), U-0126 (MEK inhibitor), or Staurosporine (PKC inhibitor) in H9c2 cells. ANG II-induced DNA fragmentation and TUNEL-positive cells were blocked by IGF-II/IIR antibodies and antisense IGF-II, but not by IGF-II sense. IGF-II-induced apoptosis was blocked by IGF-IIR antibody and CsA. The increased gene expressions of IGF-II and -IIR induced by ANG II were reversed by U-0126 and Sp600125, respectively. Caspase 8 activities induced by ANG II were attenuated by U-0126, SP-600125, and CsA. DNA fragmentation induced by ANG II was totally blocked by SP-600125, and CsA and was attenuated by U-0126. In rats with 0- to 20-day complete abdominal aorta ligation, the increases in IGF-II/IIR levels in the left ventricle were accompanied by hypertension as well as increases in caspase 9 activities and TUNEL-positive cardiac myocytes. ANG II-induced apoptosis was reversed by IGF-II/IIR blockade and coexisted with increased transactivation of IGF-II and -IIR, which are mediated by ERK and JNK pathways, respectively, both of which further contributed to cardiomyoblast apoptosis via calcineurin signaling. The increased cardiac IGF-II, IGF-IIR, caspase 9, and cellular apoptosis were also found in hypertensive rats with abdominal aorta ligation.  相似文献   

9.
10.
Hypertension is closely associated with vascular endothelial dysfunction. The aim of this study was to investigate the effects of Angiotensin II (ANG II) receptor antagonist losartan on the blood-brain barrier (BBB) permeability in L-NAME-induced hypertension and/or in ANG II-induced acute hypertension in normotensive and hypertensive rats. Systolic blood pressure was measured by tail cuff method before, during and following L-NAME treatment (1 g/L). Losartan (3 mg/kg) was given to the animal for five days. Acute hypertension was induced by ANG II (60 microg/kg). Arterial blood pressure was directly measured on the day of the experiment. BBB disruption was quantified according to the extravasation of the albumin-bound Evans blue dye. Losartan significantly reduced the mean arterial blood pressure from 169 +/- 3.9 mmHg to 82 +/- 2.9 mmHg in L-NAME and from 171 +/- 2.9 mmHg to 84 +/- 2.9 in L-NAME plus losartan plus ANG II groups (p < 0.05). The content of Evans blue dye in the cerebral cortex significantly increased in L-NAME (p < 0.01). Moreover, the content of Evans blue dye markedly increased in the cerebellum (p < 0.001) and slightly increased in diencephalon region (p < 0.05) in L-NAME plus ANG II. Losartan reduced the increased BBB permeability to Evans blue dye in L-NAME (p < 0.01) and L-NAME plus ANG II (p < 0.001). These results indicate that L-NAME and L-NAME plus ANG II both lead to an increase in microvascular Evans blue dye efflux to brain, and losartan treatment attenuates this protein-bound dye transport into brain tissue presumably due to its protective effect on endothelial cells of brain vessels.  相似文献   

11.
We have previously reported that angiotensin II (ANG II) treatment of A10 vascular smooth muscle cells (VSMCs) increased inhibitory G proteins (G(i) protein) expression and associated adenylyl cyclase signaling which was attributed to the enhanced MAP kinase activity. Since ANG II has been shown to increase oxidative stress, we investigated the role of oxidative stress in ANG II-induced enhanced expression of G(i)alpha proteins and examined the effects of antioxidants on ANG II-induced enhanced expression of G(i)alpha proteins and associated adenylyl cyclase signaling in A10 VSMCs. ANG II treatment of A10 VSMCs enhanced the production of O(2)(-) and the expression of Nox4 and P47(phox), different subunits of NADPH oxidase, which were attenuated toward control levels by diphenyleneiodonium (DPI). In addition, ANG II augmented the expression of G(i)alpha-2 and G(i)alpha-3 proteins in a concentration- and time-dependent manner; the maximal increase in the expression of G(i)alpha was observed at 1 to 2 h and at 0.1-1.0 microM. The enhanced expression of G(i)alpha-2 and G(i)alpha-3 proteins was restored to control levels by antioxidants such as N-acetyl-L-cysteine, alpha-tocopherol, DPI, and apocynin. In addition, ANG II also enhanced the ERK1/2 phosphorylation that was restored to control levels by DPI. Furthermore, the inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of 5'-O-(3-triotriphosphate) (receptor-independent G(i) functions) and ANG II-, des(Glu(18),Ser(19),Glu(20),Leu(21),Gly(22))atrial natriuretic peptide(4-23)-NH(2) (natriuretic peptide receptor-C agonist), and oxotremorine-mediated inhibitions of adenylyl cyclase (receptor-dependent functions) that were augmented in ANG II-treated VSMCs was also restored to control levels by antioxidant treatments. In addition, G(s)alpha-mediated diminished stimulation of adenylyl cyclase by stimulatory hormones in ANG II-treated cells was also restored to control levels by DPI. These results suggest that ANG II-induced enhanced levels of G(i)alpha proteins and associated functions in VSMCs may be attributed to the ANG II-induced enhanced oxidative stress, which exerts its effects through mitogen-activated protein kinase signaling pathway.  相似文献   

12.
The aim of this study was to evaluate the effect of prevention of hypertension on glomerular hypertrophy, renal cell replication and accumulation of glomerular fibronectin in a model of genetic hypertension and experimental diabetes. Four-week-old streptozotocin induced spontaneously hypertensive rats (SHR) were randomized for no treatment, or for treatment with captopril, losartan or triple therapy (hydrochlorothiazide, reserpine and hydralazine) for 20 days. Increase in systolic blood pressure was equally prevented by captopril (118+/-15 mmHg), losartan (111+/-9) and triple therapy (112+/-14, p<0.0001). Glomerular size was higher (p<0.005) in diabetic SHR (27,300+/-2130 microm(2)) compared with non-diabetic SHR (23,800+/-307). The antihypertensive therapy with captopril (23,900+/-175), losartan (23,800+/-120), and triple therapy (23,400+/-210) prevented the glomerular enlargement in diabetic SHR. Glomerular expression of fibronectin was increased in diabetic SHR (7.61+/-1.22 densitometric unit) as compared to the controls (2.27+/-2.15, p<0.0001), and was decreased (p<0.0001 vs diabetic SHR) with captopril (2.49+/-1.42), losartan (1.57+/-1.1) and triple therapy (2.04+/-1.42). The number of replicating glomerular cell significantly decreased in diabetic SHR and it was restored by all three antihypertensive regimes. The glomerular expression of p27(Kip1) was increased in diabetic SHR but it was not modified by antihypertensive treatment. Strict blood pressure control, in diabetic SHR independently of the class of antihypertensive agent, restores glomerular hypertrophy and renal cellular replication, and prevents the increment in glomerular fibronectin.  相似文献   

13.
Kim J  Keys JR  Eckhart AD 《Cellular signalling》2006,18(10):1695-1701
Many G protein-coupled receptors can couple to multiple G proteins to convey their intracellular signaling cascades. The receptors for lysophosphatidic acid (LPA) possess this ability. LPA receptors are important mediators of a wide variety of biological actions including cell migration, proliferation and survival which are processes that can all have a considerable impact on vascular smooth muscle (VSM) and blood vessels. To date, confirmation of G proteins involved has mostly relied on the inhibition of Gi-mediated signaling via pertussis toxin (PTx). We were interested in the specific involvement of LPA-Gq-mediated signaling therefore we isolated aorta VSM cells (VSMCs) from transgenic mice that express a peptide inhibitor of Gq, GqI, exclusively in VSM. We detected both LPA1 and LPA2 receptor expression in mouse VSM whereas LPA1 and LPA3 were expressed in rat VSM. SM22-GqI did not alter LPA-induced migration but it was sufficient to attenuate LPA-induced proliferation. GqI expression also attenuated LPA-induced ERK1/2 and Akt activation by 40-50%. To test the feasibility of this peptide as a potential therapeutic agent, we also generated adenovirus encoding the GqI. Transient expression of GqI was capable of inhibiting both LPA-induced migration and proliferation of VSMCs isolated from rat and mouse. Furthermore, ERK activation in response to LPA was also attenuated in VSMCs with Adv-GqI. Therefore, LPA receptors couple to Gq in VSMC and mediate migration and proliferation which may be mediated through activation of ERK1/2 and Akt. Our data also suggest that both chronic and transient expression of the GqI peptide is an effective strategy to lower Gq-mediated LPA signaling and may be a successful therapeutic strategy to combat diseases with enhanced VSM growth such as occurs following angioplasty or stent implantation.  相似文献   

14.
Although one of the common characteristics of pulmonary hypertension is abnormal sustained vasoconstriction, the signaling pathways that mediate this heightened pulmonary vascular response are still not well defined. Protein kinase C (PKC) and Rho-kinase are regulators of smooth muscle contraction induced by G protein-coupled receptor agonists including endothelin-1 (ET-1), which has been implicated as a signaling pathway in pulmonary hypertension. Toward this end, it was hypothesized that both Rho-kinase and PKC mediate the pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle, and therefore, the purpose of this study was to determine the role of PKC and Rho-kinase signaling in ET-1-induced vasoconstriction in both normotensive (Sprague-Dawley) and hypertensive (Fawn-Hooded) rat pulmonary arterial smooth muscle. Results indicate that ET-1 caused greater vasoconstriction in hypertensive pulmonary arteries compared with the normal vessels, and treatment with the PKC antagonists chelerythrine, rottlerin, and G? 6983 inhibited the vasoconstrictor response to ET-1 in the hypertensive vessels. In addition, the specific Rho-kinase inhibitor Y-27632 significantly attenuated the effect of ET-1 in both normotensive and hypertensive phenotypes, with greater inhibition occurring in the hypertensive arteries. Furthermore, Western blot analysis revealed that ET-1 increased RhoA expression in both normotensive and hypertensive pulmonary arteries, with expression being greater in the hypertensive state. These results suggest that both PKC and Rho/Rho-kinase mediate the heightened pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle.  相似文献   

15.
Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.  相似文献   

16.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

17.
We examined the effect of hypoxia and high glucose (HG) on ANG II type 1 (AT(1)) receptor expression and proliferation in cultured vascular smooth muscle (VSM) cells. Exposure of quiescent cells to hypoxia in a serum-free DME-Ham's F-12 medium for 6-24 h induced a progressive increase in AT(1) mRNA expression. Exposure of cells to 24 h of hypoxia also resulted in a significant increase in ANG II receptor binding as assessed with (125)I-labeled ANG II. Treatment with ANG II (1 microM) for 24 h under normoxic conditions caused an approximately 1.5-fold increase in both DNA synthesis and cell number, which was enhanced to approximately 3.0-fold under hypoxic conditions. An AT(1) receptor antagonist (losartan, 10 microM) blocked the ANG II-induced increase in DNA synthesis under both normoxic and hypoxic conditions. Incubations in HG medium (25 mM) for 12-24 h under normoxic conditions induced an approximately 2.5-fold increase in AT(1) mRNA levels, which was markedly enhanced by hypoxia to approximately 5.5-fold at 12 h and approximately 8.5-fold at 24 h. ANG II under HG-normoxic conditions caused a complete downregulation of AT(1) expression, which was prevented by hypoxia. These results demonstrate an upregulation of AT(1) receptor expression by hypoxia and HG in cultured VSM cells and suggest a mechanism for enhanced ANG II-induced VSM cell proliferation and the development of atherosclerosis in diabetes.  相似文献   

18.
We investigated whether phosphatidylinositol 3-kinase (PI3K) and 68-kDa Src associated during mitosis (SAM68) are involved in angiotensin II (ANG II) growth signaling in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). PI3K activity was assessed by measuring the phosphorylation of the regulatory subunit p85alpha and kinase activity of the catalytic 110-kDa subunit of PI3K. The PI3K-SAM68 interaction was assessed by coimmunoprecipitation, and SAM68 activity was evaluated by poly(U) binding. SAM68 expression was manipulated by SAM68 antisense oligonucleotide transfection. VSMC growth was evaluated by measuring [3H]leucine and [3H]thymidine incorporation as indexes of protein and DNA synthesis, respectively. ANG II increased the phosphorylation of p85alpha and kinase activity of the 110-kDa PI3K subunit in VSMCs from SHR and transiently increased p85alpha-SAM68 association. In Wistar-Kyoto (WKY) rat cells, ANG II increased SAM68 phosphorylation without influencing poly(U) binding. In SHR, ANG II did not influence SAM68 phosphorylation but increased SAM68 binding to poly(U). ANG II stimulated phosphoinositol phosphate synthesis by PI3K in SAM68 immunoprecipitates in both groups, with significantly enhanced effects in SHR. Inhibition of PI3K, using the selective inhibitor LY-294002, and downregulation of SAM68, by antisense oligonucleotides, significantly decreased ANG II-stimulated incorporation of [3H]leucine and [3H]thymidine in VSMCs, showing the functional significance of PI3K and SAM68. Our data demonstrate that PI3K and SAM68 are involved in ANG II signaling and that SAM68 is differentially regulated in VSMCs from SHR. These processes may contribute to the enhanced ANG II signaling and altered VSMC growth in SHR.  相似文献   

19.
Arteries from hypertensive animals and humans have increased spontaneous tone. Increased superoxide anion (superoxide) contributes to elevated blood pressure (BP) and spontaneous tone in hypertension. The association between the extracellular signaling-regulated kinase 1/2 (ERK1/2)-mitogen-activated protein kinase (MAPK) signaling pathway and generation of superoxide and spontaneous tone in isolated aorta was studied in angiotensin II (ANG II)-infused hypertensive (HT) rats. Systolic BP, phosphorylation of ERK, aortic superoxide formation, and aortic spontaneous tone were compared in sham normotensive and HT rats. Infusion of ANG II (0.5 mg x kg(-1) x day(-1) for 6 days) significantly elevated the systolic BP (P<0.01). The phosphorylation of ERK1/2 vs. total ERK1/2 in thoracic aorta was enhanced, and superoxide was increased in the HT vs. the sham group (P<0.01). Spontaneous tone developed in the HT group, but not in the normotensive group. MAPK/ERK1/2 (MEK1/2)-ERK1/2 signaling pathway inhibitors, PD-98059 (10 micromol/l), and U-0126 (10 micromol/l), significantly reduced the phosphorylation of ERK1/2, superoxide generation (P<0.01), and spontaneous tone (P<0.01) in HT. These findings suggest that ANG II infusion induces the production of superoxide and spontaneous tone and that both are dependent on ERK-MAPK activation. In endothelium-denuded aorta, however, MEK1/2 inhibitors did not inhibit the spontaneous tone, even though they significantly reduced superoxide generation similar to endothelium-intact aorta. These data suggest that inhibition of ERK1/2 signaling pathway, via PD-98059 or U-0126, may regulate spontaneous tone in an endothelium-dependent manner. In conclusion, these findings support the importance of the ERK1/2 signaling pathway in modulating vascular oxidative stress and subsequently mediating spontaneous tone in HT.  相似文献   

20.
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号