首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Oxalyl-coenzyme A decarboxylase is a thiamin diphosphate-dependent enzyme that plays an important role in the catabolism of the highly toxic compound oxalate. We have determined the crystal structure of the enzyme from Oxalobacter formigenes from a hemihedrally twinned crystal to 1.73 A resolution and characterized the steady-state kinetic behavior of the decarboxylase. The monomer of the tetrameric enzyme consists of three alpha/beta-type domains, commonly seen in this class of enzymes, and the thiamin diphosphate-binding site is located at the expected subunit-subunit interface between two of the domains with the cofactor bound in the conserved V-conformation. Although oxalyl-CoA decarboxylase is structurally homologous to acetohydroxyacid synthase, a molecule of ADP is bound in a region that is cognate to the FAD-binding site observed in acetohydroxyacid synthase and presumably fulfils a similar role in stabilizing the protein structure. This difference between the two enzymes may have physiological importance since oxalyl-CoA decarboxylation is an essential step in ATP generation in O. formigenes, and the decarboxylase activity is stimulated by exogenous ADP. Despite the significant degree of structural conservation between the two homologous enzymes and the similarity in catalytic mechanism to other thiamin diphosphate-dependent enzymes, the active site residues of oxalyl-CoA decarboxylase are unique. A suggestion for the reaction mechanism of the enzyme is presented.  相似文献   

2.
Thiamin diphosphate-dependent decarboxylases catalyze the non-oxidative decarboxylation of 2-keto carboxylic acids. Although they display relatively low sequence similarity, and broadly different range of substrates, these enzymes show a common homotetrameric structure. Here we describe a kinetic characterization of the substrate spectrum of a recently identified member of this class, the branched chain 2-keto acid decarboxylase (KdcA) from Lactococcus lactis. In order to understand the structural basis for KdcA substrate recognition we developed a homology model of its structure. Ser286, Phe381, Val461 and Met358 were identified as residues that appeared to shape the substrate binding pocket. Subsequently, site-directed mutagenesis was carried out on these residues with a view to converting KdcA into a pyruvate decarboxylase. The results show that the mutations all lowered the Km value for pyruvate and both the S286Y and F381W variants also had greatly increased values of k(cat) with pyruvate as a substrate.  相似文献   

3.
The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. The steady-state distribution of covalent ThDP intermediates of IPDC reacting with 3-indolepyruvate and the alternative substrates benzoylformate and pyruvate has been analyzed by (1)H NMR spectroscopy. For the first time, we are able to isolate and directly assign covalent intermediates of ThDP with aromatic substrates. The intermediate analysis of IPDC variants is used to infer the involvement of active site side chains and functional groups of the cofactor in distinct catalytic steps during turnover of the different substrates. As a result, three residues (glutamate 468, aspartate 29, and histidine 115) positioned perpendicular to the thiazolium moiety of ThDP are involved in binding of all substrates and decarboxylation of the respective tetrahedral ThDP-substrate adducts. Most likely, interactions of these side chains with the substrate-derived carboxylate account for an optimal orientation of the substrate and/or intermediate in the course of carbon-carbon ligation and decarboxylation supporting the suggested least-motion, maximum overlap mechanism. The active site residue glutamine 383, which is located at the opposite site of the thiazolium nucleus as the "carboxylate pocket" (formed by the Glu-Asp-His triad), is central to the substrate specificity of IPDC, probably through orbital alignment. The Glu51-cofactor proton shuttle is, conjointly with the Glu-Asp-His triad, involved in multiple proton transfer steps, including ylide generation, substrate binding, and product release. Studies with para-substituted benzoylformate substrates demonstrate that the electronic properties of the substrate affect the stabilization or destabilization of the carbanion intermediate or carbanion-like transition state and in that way alter the rate dependence on decarboxylation. In conclusion, general mechanistic principles of catalysis of ThDP-dependent enzymes are discussed.  相似文献   

4.
The product of the ARO10 gene from Saccharomyces cerevisiae was initially identified as a thiamine diphosphate-dependent phenylpyruvate decarboxylase with a broad substrate specificity. It was suggested that the enzyme could be responsible for the catabolism of aromatic and branched-chain amino acids, as well as methionine. In the present study, we report the overexpression of the ARO10 gene product in Escherichia coli and the first detailed in vitro characterization of this enzyme. The enzyme is shown to be an efficient aromatic 2-keto acid decarboxylase, consistent with it playing a major in vivo role in phenylalanine, tryptophan and possibly also tyrosine catabolism. However, its substrate spectrum suggests that it is unlikely to play any significant role in the catabolism of the branched-chain amino acids or of methionine. A homology model was used to identify residues likely to be involved in substrate specificity. Site-directed mutagenesis on those residues confirmed previous studies indicating that mutation of single residues is unlikely to produce the immediate conversion of an aromatic into an aliphatic 2-keto acid decarboxylase. In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. We show that the properties of the two phenylpyruvate decarboxylases are similar in some respects yet quite different in others, and that the properties of both are distinct from those of the indolepyruvate decarboxylase. Finally, we demonstrate that it is unlikely that replacement of a glutamic acid by leucine leads to discrimination between phenylpyruvate and indolepyruvate, although, in this case, it did lead to unexpected allosteric activation.  相似文献   

5.
Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.  相似文献   

6.
Thiamin diphosphate (ThDP)-dependent enzymes catalyze a range of transformations, such as decarboxylation and ligation. We report a novel spectroscopic assay for detection of some of the ThDP-bound intermediates produced on benzoylformate decarboxylase. Benzoylformate decarboxylase was mixed with its alternate substrate p-nitrobenzoylformic acid on a rapid-scan stopped-flow instrument, resulting in formation of three absorbing species (lambda(max) in parentheses): I(1) (a transient at 620 nm), I(2) (a transient at 400 nm), and I(3) (a stable absorbance with lambda(max) > 730 nm). Analysis of the kinetics of the two transient species supports a model in which a noncovalent complex of the substrate and the enzyme is converted to the first covalent intermediate I(1); the absorbance corresponding to I(1) is probably a charge-transfer band arising from the interaction of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct (2-p-nitromandelylThDP) and the enzyme. The rate of disappearance of I(1) parallels the rate of formation of I(2). Chemical models suggest the lambda(max) of I(2) (near 400 nm) to be appropriate to the enamine, a key intermediate in ThDP-dependent reactions resulting from the decarboxylation of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct. Therefore, the rate of disappearance of I(1) and/or the appearance of I(2) directly measure the rate of decarboxylation. A relaxation kinetic treatment of the pre-steady-state kinetic data also revealed a hitherto unreported facet of the mechanism, alternating active-sites reactivity. Parallel studies of the His70Ala BFD active-site variant indicate that it cannot form the complex reported by the charge-transfer band (I(1)) at the level of the wild-type protein.  相似文献   

7.
A series of [p-(halomethyl)benzoyl]formates have been investigated as substrates for benzoylformate decarboxylase. These analogues vary from acting as normal substrates to acting as potent competitive inhibitors. The fluoro analogue is a substrate with Km (190 microM) and turnover number (20 s-1) similar to those of benzoylformate (Km = 340 microM; 81 s-1). The bromo analogue is a competitive inhibitor (Ki = 0.3 microM) and exhibits processing to eliminate bromide and form (p-methylbenzoyl)thiamin pyrophosphate. This modified cofactor hydrolyzes to form the p-methylbenzoate in quantitative yield. The chloro analogue [Km(app) = 21 microM] partitions between these two pathways such that 0.6% of the analogue ultimately forms p-methylbenzoate. These data are consistent with the interpretation that the leaving group potential of the halogen determines the enzymic fate of the analogue and that the potent inhibition observed for the bromo analogue is due to covalent modification of the cofactor.  相似文献   

8.
A new large-scale purification method for benzoylformate decarboxylase from Pseudomonas putida has allowed us to undertake an X-ray crystallographic study of the enzyme. The previously observed instability of the enzyme was overcome by addition of 100 microM thiamine pyrophosphate to buffers used in the purification. The final enzyme preparation was more than 97% pure, as determined by denaturing gel electrophoresis and densitometry. The mobility of the enzyme on a gel filtration column indicates that it is a tetramer of 57-kDa subunits. Large, single crystals of benzoylformate decarboxylase were grown from solutions of buffered polyethylene glycol 400, pH 8.5. The crystals diffract to beyond 1.6 A resolution and are stable for days to X-ray radiation. Analysis of X-ray data from the crystals, along with the newly determined quaternary structure, identifies the space group as I222. The unit cell dimensions are a = 82 A, b = 97 A, c = 138 A. An average Vm value for the crystals is consistent with one subunit per asymmetric unit. The subunits of the tetramer must be arranged with tetrahedral 222 symmetry.  相似文献   

9.
Benzoylformate decarboxylase (benzoylformate carboxy-lyase, BFD; EC 4.1.1.7) from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors).  相似文献   

10.
The 1',4'-iminopyrimidine tautomeric form of the coenzyme thiamin diphosphate (ThDP), implicated in catalysis on the basis of the conformation of enzyme-bound ThDP, has been observed by both ultraviolet absorption and circular dichroism spectroscopy. On yeast pyruvate decarboxylase, the unusual tautomer is observed in an active center variant in which catalysis in the post-decarboxylation regime of the reaction is compromised. In a model system consisting of N1-methyl-4-aminopyrimidinium or N1-methyl-N4-n-butylpyrimidinium salts, on treatment with either NaOH in water, or DBU in DMSO there is an intermediate formed with lambda(max) near 310 nm, and this intermediate reverts back to the starting salt on acidification. Proton NMR chemical shifts are consistent with the intermediate representing the 1-methyl-4-imino tautomer. On the enzyme, the intermediate could be observed by rapid-scan stopped flow with UV detection when reacting holoenzyme of the E477Q active center variant with pyruvate, and by circular dichroism even in the absence of pyruvate. This represents the first direct observation of the imino tautomeric form of ThDP both on the enzyme and in models, although some years ago, this laboratory had already reported some pertinent acid-base properties for its formation [Jordan, F., and Mariam, Y. H. (1978) J. Am. Chem. Soc.100, 2534-2541]. The work also represents the first instance in which a rare tautomer implicated in catalysis is identified and suggests that such tautomeric catalysis may be more common in biology than hitherto recognized.  相似文献   

11.
Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.  相似文献   

12.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

13.
F Jordan  H Li  A Brown 《Biochemistry》1999,38(20):6369-6373
When the E91D variant of apo-yeast pyruvate decarboxylase (EC 4.1.1. 1) is exposed to C2alpha-hydroxybenzylthiamin diphosphate, this putative intermediate is partitioned on the enzyme between release of the benzaldehyde product (as evidenced by regeneration of active enzyme) and dissociation of the proton at C2alpha to form the enamine-C2alpha-carbanion intermediate. While the pKa (the negative log of the acid dissociation constant) for this dissociation is approximately 15.4 in water, formation of the enamine at pH 6.0 on the enzyme indicates a >9 unit pKa suppression by the enzyme environment. The dramatic stabilization of this zwitterionic enamine intermediate at the active center is sufficient to account for as much as a 10(9)-fold rate acceleration on the enzyme. This "solvent" effect could be useful for achieving the bulk of the rate acceleration provided by the protein over and above that afforded by the coenzyme on all thiamin diphosphate-dependent 2-oxo acid decarboxylases.  相似文献   

14.
Joseph E  Wei W  Tittmann K  Jordan F 《Biochemistry》2006,45(45):13517-13527
The X-ray crystal structure of pyruvamide-activated yeast pyruvate decarboxylase (YPDC) revealed a flexible loop spanning residues 290 to 304 on the beta-domain of the enzyme, not seen in the absence of pyruvamide, a substrate activator surrogate. Site-directed mutagenesis studies revealed that residues on the loop affect the activity, with some residues reducing k(cat)/K(m) by at least 1000-fold. In the pyruvamide-activated form, the loop located on the beta domain can transfer information to the active center thiamin diphosphate (ThDP) located at the interface of the alpha and gamma domains. The sigmoidal v(0)-[S] curve with wild-type YPDC attributed to substrate activation is modulated for most variants, but is not abolished. Pre-steady-state stopped-flow studies for product formation on these loop variants provided evidence for three enzyme conformations connected by two transitions, as already noted for the wild-type YPDC at pH 5.0 [Sergienko, E. A., and Jordan, F. (2002) Biochemistry 41, 3952-3967]. (1)H NMR analysis of the intermediate distribution resulting from acid quench [Tittmann et al. (2003) Biochemistry 42, 7885-7891] with all YPDC variants indicated that product release is rate limiting in the steady state. Apparently, the loop is not solely responsible for the substrate activation behavior, rather it may affect the behavior of residue C221 identified as the trigger for substrate activation. The most important function of the loop is to control the conformational equilibrium between the "open" and "closed" conformations of the enzyme identified in the pyruvamide-activated structure [Lu et al. (2000) Eur. J. Biochem. 267, 861-868].  相似文献   

15.
Anticoenzyme action of new derivatives of thiamine: oxodihydrothiochrome and its mono- and diphosphoric esters has been studied in the experiments on mice. It is shown that the given compounds exert an inhibiting action on transketolase and pyruvate dehydrogenase and do not change activity of 2-oxoglutarate dehydrogenase in the animal organism. Antivitamin effect of the studied inhibitors is observed with the lower doses and in the earlier terms as compared with the other known inhibitors of thiamine-diphosphate-dependent enzymes. The preparations inhibit activity of the yeast pyruvate-decarboxylase by the mixed (with respect to thiamine-diphosphate) type (Ki for oxodihydrothiochrome and its mono- and diphosphoric esters: 2.3 x 10(-3), 7.2 x 10(-4), 5.6 x 10(-5) M, respectively). Possible mechanisms of the action of the mentioned compounds as thiamine antimetabolites are discussed.  相似文献   

16.
In addition to the decarboxylation of 2-oxo acids, thiamin diphosphate (ThDP)-dependent decarboxylases/dehydrogenases can also carry out so-called carboligation reactions, where the central ThDP-bound enamine intermediate reacts with electrophilic substrates. For example, the enzyme yeast pyruvate decarboxylase (YPDC, from Saccharomyces cerevisiae) or the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1) can produce acetoin and acetolactate, resulting from the reaction of the central thiamin diphosphate-bound enamine with acetaldehyde and pyruvate, respectively. Earlier, we had shown that some active center variants indeed prefer such a carboligase pathway to the usual one [Sergienko, Jordan, Biochemistry 40 (2001) 7369-7381; Nemeria et al., J. Biol. Chem. 280 (2005) 21,473-21,482]. Herein is reported detailed analysis of the stereoselectivity for forming the carboligase products acetoin, acetolactate, and phenylacetylcarbinol by the E477Q and D28A YPDC, and the E636A and E636Q PDHc-E1 active-center variants. Both pyruvate and beta-hydroxypyruvate were used as substrates and the enantiomeric excess was analyzed by a combination of NMR, circular dichroism and chiral-column gas chromatographic methods. Remarkably, the two enzymes produced a high enantiomeric excess of the opposite enantiomer of both acetoin-derived and acetolactate-derived products, strongly suggesting that the facial selectivity for the electrophile in the carboligation is different in the two enzymes. The different stereoselectivities exhibited by the two enzymes could be utilized in the chiral synthesis of important intermediates.  相似文献   

17.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.  相似文献   

18.
Enzymes that use the cofactor thiamin diphosphate (ThDP, 1), the biologically active form of vitamin B(1), are involved in numerous metabolic pathways in all organisms. Although a theory of the cofactor's underlying reaction mechanism has been established over the last five decades, the three-dimensional structures of most major reaction intermediates of ThDP enzymes have remained elusive. Here, we report the X-ray structures of key intermediates in the oxidative decarboxylation of pyruvate, a central reaction in carbon metabolism catalyzed by the ThDP- and flavin-dependent enzyme pyruvate oxidase (POX)3 from Lactobacillus plantarum. The structures of 2-lactyl-ThDP (LThDP, 2) and its stable phosphonate analog, of 2-hydroxyethyl-ThDP (HEThDP, 3) enamine and of 2-acetyl-ThDP (AcThDP, 4; all shown bound to the enzyme's active site) provide profound insights into the chemical mechanisms and the stereochemical course of thiamin catalysis. These snapshots also suggest a mechanism for a phosphate-linked acyl transfer coupled to electron transfer in a radical reaction of pyruvate oxidase.  相似文献   

19.
In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and crystal structures of wild-type HCA II and two double mutants: H64A/N62H and H64A/N67H HCA II. His62 and His67 both have their side chains extending into the active-site cavity with distances from the zinc approximately equivalent to that of His64. Crystal structures were determined at pH 5.1-10.0, and the catalysis of the exchange of (18)O between CO(2) and water was assessed by mass spectrometry. Efficient proton shuttle exceeding a rate of 10(5) s(-)(1) was observed for histidine at positions 64 and 67; in contrast, relatively inefficient proton transfer at a rate near 10(3) s(-)(1) was observed for His62. The observation, in the crystal structures, of a completed hydrogen-bonded water chain between the histidine shuttle residue and the zinc-bound solvent does not appear to be required for efficient proton transfer. The data suggest that the number of intervening water molecules between the donor and acceptor supporting efficient proton transfer in HCA II is important, and furthermore suggest that a water bridge consisting of two intervening water molecules is consistent with efficient proton transfer.  相似文献   

20.
A kinetic analysis of Drosophila melanogaster dopa decarboxylase   总被引:1,自引:0,他引:1  
The kinetic mechanism of dopa decarboxylase (3,4-dihydroxy-L-phenylalanine carboxy-lyase, EC 4.1.1.28) was investigated in Drosophila melanogaster. Based on initial velocity and product inhibition studies, an ordered reaction is proposed for dopa decarboxylase. This kinetic mechanism is interpreted in the context of measured enzyme activities and the catecholamine pools in Drosophila. The 1(2)amd gene is immediately adjacent to the gene coding for dopa decarboxylase (Ddc) and determines hypersensitivity to alpha-methyldopa in Drosophila. Dopa decarboxylase does not decarboxylate alpha-methyldopa and hence does not generate a toxic product capable of inhibiting 1(2)amd gene function. We propose that the 1(2)amd gene is involved with an unknown catecholamine pathway involving dopa but not dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号