首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial monocyte-activating polypeptide II (EMAP II) is a proinflammatory cytokine and a chemoattractant for leukocytes. The mature cytokine is formed in apoptotic cells by cleavage of the precursor proEMAP II. Here we show that caspase-7 is capable of cleaving proEMAP II in vitro. A proEMAP II mutant, in which the ASTD cleavage site was changed to the sequence ASTA, was not processed by caspase-7. The caspase-7-mediated generation and release of mature EMAP II may provide a mechanism for leukocyte recruitment to sites of programmed cell death, and thus may link apoptosis to inflammation.  相似文献   

2.
AIMP1 (ARS-interacting multifunctional protein 1), previously known as p43, was initially identified as a factor associated with a macromolecular tRNA synthetase complex. Recently, we demonstrated that AIMP1 is also secreted and acts as a novel pleiotropic cytokine. In this study, we investigated whether AIMP1 induces the activation and maturation of murine bone marrow-derived dendritic cells (DCs). AIMP1-treated DCs exhibited up-regulated expression of cell-surface molecules, including CD40, CD86, and MHC class II. Additionally, microarray analysis and RT-PCR determinations indicated that the expression of known DC maturation genes also increased significantly following treatment with AIMP1. Treatment of DCs with AIMP1 resulted in a significant increase in IL-12 production and Ag-presenting capability, and it also stimulated the proliferation of allogeneic T cells. Importantly, AIMP1-treated DCs induced activation of Ag-specific Th type 1 (Th1) cells in vitro and in vivo. AIMP1-stimulated DCs significantly enhanced the IFN-gamma production of cocultured CD4+ T cells. Immunization of mice with keyhole limpet hemocyanin-pulsed AIMP1 DCs efficiently led to Ag-specific Th1 cell responses, as determined by flow cytometry and ELISA. The addition of a neutralizing anti-IL-12 mAb to the cell cultures that had been treated with AIMP1 resulted in the decreased production of IFN-gamma, thereby indicating that AIMP1-stimulated DCs may enhance the Th1 response through increased production of IL-12 by APCs. Taken together, these results indicate that AIMP1 protein induces the maturation and activation of DCs, which skew the immune response toward a Th1 response.  相似文献   

3.
Twenty different aminoacyl-tRNA synthetases (ARSs) link each amino acid to their cognate tRNAs. Individual ARSs are also associated with various non-canonical activities involved in neuronal diseases, cancer and autoimmune diseases. Among them, eight ARSs (D, EP, I, K, L, M, Q and RARS), together with three ARS-interacting multifunctional proteins (AIMPs), are currently known to assemble the multi-synthetase complex (MSC). However, the cellular function and global topology of MSC remain unclear. In order to understand the complex interaction within MSC, we conducted affinity purification-mass spectrometry (AP-MS) using each of AIMP1, AIMP2 and KARS as a bait protein. Mass spectrometric data were funneled into SAINT software to distinguish true interactions from background contaminants. A total of 40, 134, 101 proteins in each bait scored over 0.9 of SAINT probability in HEK 293T cells. Complex-forming ARSs, such as DARS, EPRS, IARS, Kars, LARS, MARS, QARS and RARS, were constantly found to interact with each bait. Variants such as, AIMP2-DX2 and AIMP1 isoform 2 were found with specific peptides in KARS precipitates. Relative enrichment analysis of the mass spectrometric data demonstrated that TARSL2 (threonyl-tRNA synthetase like-2) was highly enriched with the ARS-core complex. The interaction was further confirmed by coimmunoprecipitation of TARSL2 with other ARS core-complex components. We suggest TARSL2 as a new component of ARS core-complex.  相似文献   

4.
Endothelial monocyte-activating polypeptide (EMAP) II is a unique cytokine, also known as p43, the active mature form of which exhibits antiangiogenic properties in vivo and in vitro. The proteolytic enzymes associated with the cleavage and release of the active mature form, however, remain unclear. Here we show that, in contrast to prior observations, purified pro-EMAP II is not cleaved by either caspase-3 or -7 in vivo or in vitro. Thus other proteolytic processes, which allow it to induce apoptosis via caspase-3 activation in migrating and dividing endothelium, may be involved in the release of the active mature EMAP II.  相似文献   

5.
Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment.  相似文献   

6.
Endothelial and monocyte-activating polypeptide II (EMAP II) is a cytokine that plays an important role in inflammation, apoptosis and angiogenesis processes in tumour tissues. Structurally, the EMAP II is a 169 amino acid residues long C-terminal domain (residues 147–312) of auxiliary tRNA binding protein p43. In spite of existence in pdb databank of two X-ray structures there are some important aspects of EMAP II cytokine function which are still not fully understood in detail. To obtain information about 3D structure and backbone dynamic processes in solution we perform structure evaluation of human EMAP II cytokine by NMR spectroscopy. The standard approach to sequence-specific backbone assignment using 3D NMR data sets was not successful in our studies and was supplemented by recently developed 4D NMR experiments with random sampling of evolution time space. Here we report the backbone and side chain 1H, 13C, and 15N chemical shifts in solution for recombinant EMAP II cytokine together with secondary structure provided by TALOS + software.  相似文献   

7.
The aim of the study is to evaluate the effect of recombinant EMAP II cytokine (endothelial and monocyte-activating polypeptide II) on the level of MGMT gene expression; this gene encodes the O6-methylguanine-DNA-methyltransferase (MGMT) repair enzyme in the cell culture of humans. An investigation into the EMAP II effect on the proliferation of cells was carried out using the standard MTT test. The MGMT protein in a cell extract was identified by Western blot analysis. The following cell lines were investigated: A102 (fibroblasts), CB-1 (umbilical cord blood stromal cells), and 4BL6 (cells obtained from peripheral blood). It was shown in these experiments that the EMAP II cytokine induces MGMT expression in human cells of the investigated lines. There was observed a decrease in the quantity of cells in the presence of a high concentration of this cytokine. The level of expression of the MGMT repair enzyme was established to increase in human cells in vitro in a serum-free culture medium with the EMAP II cytokine.  相似文献   

8.
Interleukin-6 (IL-6) is a multifunctional cytokine thought to be a key factor in post-menopausal osteoporosis, given its ability to induce osteoclast maturation and its down regulation by estrogens. We have previously shown that the effects of TNFalphaand estradiol on the human IL-6 promoter were dependent on a region of the promoter containing a C/EBP site and a NF-kappaB site. To define the molecular mode of action of estrogens, we performed gel shift assays with this DNA fragment as a probe, and nuclear extracts from TNFalpha-induced HeLa, MCF7 and Saos2 cells. Several induced complexes specifically bound the probe. The use of various competitor DNA suggested that most of the complexes detected contained NF-kappaB factors, and that C/EBP site binding factors were important for the overall binding to the probe. Addition of in vitro translated human estrogen receptor (hER) impaired the binding of three complexes in HeLa cells and two complexes in MCF7 and Saos2 cells. Competition experiments suggested that the NF-kappaB site was necessary for the effect of hER. The use of antisera against NF-kappaB and C/EBP proteins showed that the target complexes of hER contained the c-rel proto-oncogene product and to a lesser extent, the RelA protein. Taken together, these data show that hER impairs TNFalphainduction of IL-6 by preventing c-rel and, to a lesser extent, RelA proteins binding to the NF-kappaB site of the IL-6 promoter.  相似文献   

9.
The aim of our study was to investigate the effect of recombinant human cytokine EMAP II (endothelial monocyte-activating polypeptide II) on the expression of MGMT gene, encoding repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) in human cell cultures. The influence of EMAP II on cell proliferation was performed using routine MTT assay. Identification of MGMT in cell extracts was performed using Western blot analysis. We used cell lines: A102 (fibroblasts), CB-1 (umbilical cord blood stromal cells), 4BL6 (cells derived from peripheral blood). It was shown that cytokine EMAP II caused induction of MGMT expression in studied human cell lines. There was a decrease in cell number at high concentrations of this cytokine. It was found that the presence of cytokine EMAP II in serum-free growth medium leads to increasing of repair enzyme MGMT expression level in human cells in vitro.  相似文献   

10.
Endothelial monocyte-activating polypeptide II (EMAP II) is a novel pro-apoptotic cytokine that shares sequence homology with the C-terminal regions of several tRNA synthetases. Pro-EMAP II, the precursor of EMAP II, is associated with the multi-tRNA synthetase complex and facilitates aminoacylation activity. The structure of human EMAP II, solved at 1.8 A resolution, revealed the oligomer-binding fold for binding different tRNAs and a domain that is structurally homologous to other chemokines. The similar structures to the RNA binding motif of EMAP II was previously observed in the anticodon binding domain of yeast Asp-tRNA synthetase (AspRSSC) and the B2 domain of Thermus thermophilus Phe-tRNA synthetase. The RNA binding pattern of EMAP II is likely to be nonspecific, in contrast to the AspRSSC. The peptide sequence that is responsible for cytokine activity is located, for the most part, in the beta1 strand. It is divided into two regions by a neighboring loop.  相似文献   

11.
An auxiliary factor of mammalian multi-aminoacyl-tRNA synthetases, p43, is thought to be a precursor of endothelial monocyte-activating polypeptide II (EMAP II) that triggers proinflammation in leukocytes and macrophages. In the present work, however, we have shown that p43 itself is specifically secreted from intact mammalian cells, while EMAP II is released only when the cells are disrupted. Secretion of p43 was also observed when its expression was increased. These results suggest that p43 itself should be a real cytokine secreted by an active mechanism. To determine the cytokine activity and active domain of p43, we investigated tumor necrosis factor (TNF) and interleukin-8 (IL-8) production from human monocytic THP-1 cells treated with various p43 deletion mutants. The full length of p43 showed higher cytokine activity than EMAP II, further supporting p43 as the active cytokine. p43 was also shown to activate MAPKs and NFkappaB, and to induce cytokines and chemokines such as TNF, IL-8, MCP-1, MIP-1alpha, MIP-1beta, MIP-2alpha, IL-1beta, and RANTES. Interestingly, the high level of p43 was observed in the foam cells of atherosclerotic lesions. Therefore, p43 could be a novel mediator of atherosclerosis development as well as other inflammation-related diseases.  相似文献   

12.
Human p43 is associated with macromolecular tRNA synthase complex and known as a precursor of endothelial monocyte-activating polypeptide II (EMAP II). Interestingly, p43 is also secreted to induce proinflammatory genes. Although p43 itself seems to be a cytokine working at physiological conditions, most of the functional studies have been obtained with its C-terminal equivalent, EMAP II. To gain an insight into the working mechanism of p43/EMAP II, we used EMAP II and searched for an interacting cell surface molecule. The level of EMAP II-binding molecule(s) was significantly increased in serum-starved tumor cells. Thus, the EMAP II-binding molecule was isolated from the membrane of the serum-starved CEM cell. The isolated protein was determined to be the alpha subunit of ATP synthase. The interaction of EMAP II and alpha-ATP synthase was confirmed by enzyme-linked immunosorbent assay and in vitro pull down assays and blocked with the antibodies raised against EMAP II and alpha-ATP synthase. The binding of EMAP II to the surface of serum-starved cells was inhibited in the presence of soluble alpha-ATP synthase. EMAP II inhibited the growth of endothelial cells, and this effect was relieved by soluble alpha-ATP synthase. Anti-alpha-ATP synthase antibody also showed an inhibitory effect on the proliferation of endothelial cells mimicking the activity of EMAP II. These results suggest the potential interaction of p43/EMAP II with alpha-ATP synthase and its role in the proliferation of endothelial cells.  相似文献   

13.
14.
15.
Endothelial monocyte-activating polypeptide (EMAP) II is a novel proinflammatory cytokine that is released from apoptotic and hypoxic cells. The purpose of this study was to determine the effect of EMAP II on the pulmonary artery (PA) and to characterize its mechanism of action. To study this, isolated PA rings from adult male Sprague-Dawley rats were suspended on steel hooks connected to force transducers and immersed in 37 degrees C organ baths containing modified Krebs-Henseleit solution. After equilibration, force displacement of phenylephrine-preconstricted PA was measured in response to EMAP II. Experiments were performed in endothelium-intact rings, endothelium-denuded rings, and in the presence of the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME). Pulmonary artery rings were then subjected to quantitative PCR analysis for inducible NOS (iNOS) mRNA. EMAP II caused a maximal vasodilation of 251 +/- 30.7 mg in endothelium-intact PA. EMAP II caused no vasodilation in endothelium-denuded and l-NAME-treated PA (20 +/- 14.0 mg and 17.5 +/- 7.5 mg, respectively, P < 0.001 vs. endothelium intact). In addition to its vasoactive properties, EMAP II increased PA iNOS mRNA twofold compared with controls. These results demonstrate that 1) EMAP II causes PA vasodilation; 2) EMAP II-mediated PA vasodilation is endothelium dependent and NOS dependent; and 3) EMAP II upregulates iNOS mRNA expression in PA. This report constitutes the first demonstration of EMAP II's effects on the pulmonary artery, its mechanism of action, and represents the identification of the first proinflammatory cytokine to cause PA vasodilation.  相似文献   

16.
During the production by mammalian cells of recombinant factor VIII from which the B domain was deleted (rFVIII), proteolytic cleavages in the C-terminal part of the heavy chain were observed (Kjalke et al., 1995). By radioactive pulse labelling it was investigated whether the cleavages took place inside the cells during protein synthesis or after release in the medium. The rFVIII-producing CHO (Chinese hamster ovary) cells were cultured in the presence of 35S-methionine and then the cell lysate and the conditioned media were immunoprecipitated and analyzed by electrophoresis. By pulse labelling and chasing for various time periods, it was shown that the cleavages only took place after secretion of the protein from the cells. Adding cell lysate to uncleaved rFVIII caused cleavage of the heavy chain, as seen by loss of binding to a monoclonal antibody specific for intact rFVIII, indicating that the cleavage was performed by proteinase(s) released from the lysed cells. By incubating intact rFVIII with the multicatalytic proteinase (proteasome) present in cytoplasm and nucleus of eukaryotic cells, loss of binding to the monoclonal antibody was observed. This indicates that the multicatalytic proteinase, released from lysed rFVIII producing cells, could be responsible for the cleavage of rFVIII. Among several protease inhibitors tested, only bacitracin was found to diminish the extent of cleavage. Phosphatidylserine also protected rFVIII against cleavage, probably by binding to rFVIII. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a tumour suppressor, however, the roles of AIMP3 in non-small cell lung cancer (NSCLC) are not explored yet. Here, we reported that AIMP3 significantly inhibited the cell growth and metastasis of NSCLC (lung adenocarcinoma) in vitro and in vivo. We have firstly identified that AIMP3 was down-regulated in human NSCLC tissues compared with adjacent normal lung tissues using immunohistochemistry and western blot assays. Overexpression of AIMP3 markedly suppressed the proliferation and migration of cancer cells in a p53-dependent manner. Furthermore, we observed that AIMP3 significantly suppressed tumour growth and metastasis of A549 cells in xenograft nude mice. Mechanically, we identified that AIMP3 was a direct target of miR-96-5p, and we also observed that there was a negative correlation between AIMP3 and miR-96-5p expression in paired NSCLC clinic samples. Ectopic miR-96-5p expression promoted the proliferation and migration of cancer cells in vitro and tumour growth and metastasis in vivo which partially depended on AIMP3. Taken together, our results demonstrated that the axis of miR-96-5p-AIMP3-p53 played an important role in lung adenocarcinoma, which may provide a new strategy for the diagnosis and treatment of NSCLC.  相似文献   

18.
Mycosin-1 protease (MycP1) is a serine protease anchored to the inner membrane of Mycobacterium tuberculosis, and is essential in virulence factor secretion through the ESX-1 type VII secretion system (T7SS). Bacterial physiology studies demonstrated that MycP1 plays a dual role in the regulation of ESX-1 secretion and virulence, primarily through cleavage of its secretion substrate EspB. MycP1 contains a putative N-terminal inhibitory propeptide and a catalytic triad of Asp-His-Ser, classic hallmarks of a subtilase family serine protease. The MycP1 propeptide was previously reported to be initially inactive and activated after prolonged incubation. In this study, we have determined crystal structures of MycP1 with (MycP124-422) and without (MycP163-422) the propeptide, and conducted EspB cleavage assays using the two proteins. Very high structural similarity was observed in the two crystal structures. Interestingly, protease assays demonstrated positive EspB cleavage for both proteins, indicating that the putative propeptide does not inhibit protease activity. Molecular dynamic simulations showed higher rigidity in regions guarding the entrance to the catalytic site in MycP124-422 than in MycP163-422, suggesting that the putative propeptide might contribute to the conformational stability of the active site cleft and surrounding regions.  相似文献   

19.
Multicellular eukaryotes contain a macromolecular assembly of nine aminoacyl-tRNA synthetase activities and three auxiliary proteins. One of these, p43, is the precursor of endothelial monocyte-activating polypeptide II (EMAP II), an inflammatory cytokine involved in apoptotic processes. As a step toward understanding this paradoxical association, the EMAP II portion of p43 has been localized within the rabbit reticulocyte multisynthetase complex. Immunoblot analysis demonstrates strong reaction of anti-EMAP II antiserum with p43, as well as cross-reactivity with isoleucyl-tRNA synthetase. Electron microscopic images of immunocomplexes show two antibody binding sites. The primary site is near the midpoint of the multisynthetase complex at the intersection of the arms with the base. This site near the lower edge of the central cleft is assigned to the C-terminal cytokine portion of p43. The secondary site of antibody binding is in the base of the particle and maps the location of isoleucyl-tRNA synthetase. These data allow refinement of the three-domain model of polypeptide distribution within the multisynthetase complex. Moreover, the central location of p43/EMAP II suggests a role for this polypeptide in optimizing normal function and in rapid disruption of essential cellular machinery when apoptosis is signaled.  相似文献   

20.
Refractory Anemia with Ring Sideroblasts (RARS) is an acquired myelodysplastic syndrome (MDS) characterized by an excess iron accumulation in the mitochondria of erythroblasts. The pathogenesis of RARS and the cause of this unusual pattern of iron deposition remain unknown. We considered that the inherited X-linked sideroblastic anemia with ataxia (XLSA/A) might be informative for the acquired disorder, RARS. XLSA/A is caused by partial inactivating mutations of the ABCB7 ATP-binding cassette transporter gene, which functions to enable transport of iron from the mitochondria to the cytoplasm. Furthermore, ABCB7 gene silencing in HeLa cells causes an accumulation of iron in the mitochondria. We have studied the role of ABCB7 in RARS by DNA sequencing, methylation studies, and gene expression studies in primary CD34+ cells and in cultured erythroblasts. The DNA sequence of the ABCB7 gene is normal in patients with RARS. We have investigated ABCB7 gene expression levels in the CD34+ cells of 122 MDS cases, comprising 35 patients with refractory anemia (RA), 33 patients with RARS and 54 patients with RA with excess blasts (RAEB), and in the CD34+ cells of 16 healthy controls. We found that the expression levels of ABCB7 are significantly lower in the RARS group. RARS is thus characterized by lower levels of ABCB7 gene expression in comparison to other MDS subtypes. Moreover, we find a strong relationship between increasing percentage of bone marrow ring sideroblasts and decreasing ABCB7 gene expression levels. Erythroblast cell cultures confirm the low levels of ABCB7 gene expression levels in RARS. These data provide an important link between inherited and acquired forms of sideroblastic anemia and indicate that ABCB7 is a strong candidate gene for RARS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号