首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Intercellular communication allows co-ordination of cell metabolism and sensitivity to extracellular stimuli. In bone cells, paracrine stimulation and cell-to-cell coupling through gap junctions induce the formation of complex intercellular networks, which favours the intercellular exchange of nutrients and second messengers, ultimately controlling the process of bone remodelling. The importance of local factors in bone remodelling is known since many years. Bone cells secrete and respond to a variety signals, among which include prostaglandins, cytokines, growth factors, and ATP. We here report evidence that extracellular NAD(+) is a novel extracellular signal stimulating osteoblast differentiation. We found that HOBIT human osteoblastic cells, which are known to express ADP-ribosyl cyclase/CD38 activity, respond to micromolar concentrations of extracellular NAD(+) with oscillatory increases of the cytosolic Ca(2+) concentration. The initial Ca(2+) response was followed by a time-dependent inhibition of cell growth, the appearance of an epithelial morphology, and by an increase of alkaline phosphatase and osteocalcin expression. Under resting condition HOBIT cells release NAD(+) in the extracellular medium and the release is significantly potentiated by mechanical stimulation. Taken together these results point to NAD(+) as a novel autocrine/paracrine factor involved in stimulation and maintenance of the osteoblast differentiated phenotype.  相似文献   

2.
ADP-ribosyl cyclases catalyze the transformation of nicotinamide adenine dinucleotide (NAD+) into the calcium-mobilizing nucleotide second messenger cyclic adenosine diphosphoribose (cADP-ribose) by adenine N1-cyclization onto the C-1' ' position of NAD+. The invertebrate Aplysia californica ADP-ribosyl cyclase is unusual among this family of enzymes by acting exclusively as a cyclase, whereas the other members, such as CD38 and CD157, also act as NAD+ glycohydrolases, following a partitioning kinetic mechanism. To explore the intramolecular cyclization reaction, the novel nicotinamide 2-fluoroadenine dinucleotide (2-fluoro-NAD+) was designed as a sterically very close analogue to the natural substrate NAD+, with only an electronic perturbation at the critical N1 position of the adenine base designed to impede the cyclization reaction. 2-Fluoro-NAD+ was synthesized in high yield via Lewis acid catalyzed activation of the phosphoromorpholidate derivative of 2-fluoroadenosine 5'-monophosphate and coupling with nicotinamide 5'-monophosphate. With 2-fluoro-NAD+ as substrate, A. californica ADP-ribosyl cyclase exhibited exclusively a NAD+ glycohydrolase activity, catalyzing its hydrolytic transformation into 2-fluoro-ADP-ribose, albeit at a rate ca. 100-fold slower than for the cyclization of NAD+ and also, in the presence of methanol, into its methanolysis product beta-1' '-O-methyl 2-fluoro-ADP-ribose with a preference for methanolysis over hydrolysis of ca. 100:1. CD38 likely converted 2-fluoro-NAD+ exclusively into the same product. We conclude that A. californica ADP-ribosyl cyclase can indeed be classified as a multifunctional enzyme that also exhibits a classical NAD+ glycohydrolase function. This alternative pathway that remains, however, kinetically cryptic when using NAD+ as substrate can be unmasked with a dinucleotide analogue whose conversion into the cyclic derivative is blocked. 2-Fluoro-NAD+ is therefore a useful molecular tool allowing dissection of the kinetic scheme for this enzyme.  相似文献   

3.
ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.  相似文献   

4.
The key enzyme in the biosynthesis of clinically important aminocyclitol antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which converts ubiquitous d-glucose 6-phosphate (G-6-P) into the specific carbocycle, 2-deoxy-scyllo-inosose with an aid of NAD(+)-NADH recycling. The NAD(+)-dependent first step of the DOIS reaction was examined in detail by the use of 6-phosphonate and 6-homophosphonate analogs of G-6-P. Both analogs showed competitive inhibition against the DOIS reaction with K(i) values of 1.3 and 2.8 mM, respectively, due to their inability for the subsequent phosphate elimination. Based on the direct spectrophotometric observation of NADH formed by the hydride transfer from 6-phosphonate to NAD(+), the stereospecificity of the hydride transfer in the DOIS reaction was analyzed with 6-[4-(2)H]phosphonate and was found to be pro-R specific.  相似文献   

5.
The inflammatory cytokine TNF is known to affect glucose and lipid metabolism, where its action leads to a cachexic state. Despite a well-established connection of TNF to metabolism, the relationship between TNF and NAD(+) metabolism remains unclear. In this report, we evaluated the effects of TNF on NAD(+) metabolism in cells that are TNF's primary autocrine target-macrophages. We designed real-time PCR primers to all NAD(+) metabolic enzymes, which we used to examine TNF-induced changes over time. We found that TNF paradoxically up-regulated enzymes that served to increase NAD(+) levels, such as IDO and PBEF, as well as enzymes that decrease NAD(+) levels, such as CD38 and CD157. The significance of these mRNA changes was evaluated by examining TNF-mediated changes in cellular NAD(+) levels. Treatment of macrophages with TNF decreased NAD(+) levels over time, suggesting that increases in NAD(+)-degrading enzymes were dominant. To evaluate whether this was the case, we measured TNF-mediated changes in NAD(+) levels in animals where CD38 was genetically deleted. In CD38-/- macrophages, the effects of TNF were reversed, with TNF increasing NAD(+) levels over time. The significance of our findings is threefold: (1) we establish that TNF affects NAD(+) metabolism by regulating the expression of major NAD(+) metabolic enzymes, (2) TNF-induced decreases in cellular NAD(+) levels were carried out through the up-regulation of extracellularly situated enzymes, and (3) we provide a mechanism for the observed clinical connection of TNF-dependent diseases to tissue reductions in NAD(+) content.  相似文献   

6.
A high-pressure-liquid-chromatography (HPLC)-based technique was developed to assess the oxidized nicotinamide adenine dinucleotide (NAD(+))-glycohydrolase activity of the catalytic domain of Pseudomonas exotoxin A containing a hexa-His tag. The assay employs reverse-phase chromatography to separate the substrate (NAD(+)) and products (adenosine 5'-diphosphate-ribose and nicotinamide) produced over the reaction time course, whereby the peak area of nicotinamide is correlated using a standard curve. This technique was used to determine whether the NAD(+) analogue, 2'-F-ribo-NAD(+), was a competing substrate or a competitive inhibitor for this toxin. This NAD(+) analogue was hydrolyzed at a rate of 0.2% that of NAD(+) yet retained the same binding affinity for the toxin as the parent compound. Finally, the rate that a fluorescent NAD(+) analogue, epsilon-NAD(+), is hydrolyzed by the toxin was also investigated. This analogue was hydrolyzed six times slower than NAD(+) as determined using HPLC. The rate of hydrolysis of epsilon-NAD(+) calculated using the fluorometric version of the assay shows a sixfold increase in reaction rate compared to that determined by HPLC. This HPLC-based assay is adaptable to any affinity-tagged enzyme that possesses NAD(+)-glycohydrolase activity and offers the advantage of directly measuring the enzyme-catalyzed hydrolytic rate of NAD(+) and its analogues.  相似文献   

7.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins, and is believed to be the key enzyme responsible for the biological inactivation of these biologically potent eicosanoids. The enzyme utilizes NAD(+) specifically as a coenzyme. Potential amino acid residues involved in binding NAD(+) and facilitating enzyme catalysis have been partially identified. In this report, we propose that three more residues in 15-PGDH, Ile-17, Asn-91, and Val-186, are also involved in the interaction with NAD(+). Site-directed mutagenesis was used to examine their roles in binding NAD(+). Several mutants (I17A, I17V, I17L, I17E, I17K, N91A, N91D, N91K, V186A, V186I, V186D, and V186K) were prepared, expressed as glutathione S-transferase (GST) fusion enzymes in Escherichia coli, and purified by GSH-agarose affinity chromatography. Mutants I17E, I17K, N91L, N91K, and V186D were found to be inactive. Mutants N91A, N91D, V186A, and V186K exhibited comparable activities to the wild type enzyme. However, mutants I17A, I17V, I17L, and V186I had higher activity than the wild type. Especially, the activities of I17L and V186I were increased nearly 4- and 5-fold, respectively. The k(cat)/K(m) ratios of all active mutants for PGE(2) were similar to that of the wild type enzyme. However, the k(cat)/K(m) ratios of mutants I17A and N91A for NAD(+) were decreased 5- and 10-fold, respectively, whereas the k(cat)/K(m) ratios of mutants I17V, N91D, V186I, and V186K for NAD(+) were comparable to that of the wild type enzyme. The k(cat)/K(m) ratios of mutants I17L and V186A for NAD(+) were increased over nearly 2-fold. These results suggest that Ile-17, Asn-91, and Val-186 are involved in the interaction with NAD(+) and contribute to the full catalytic activity of 15-PGDH.  相似文献   

8.
Zielinska W  Barata H  Chini EN 《Life sciences》2004,74(14):1781-1790
CD38, a bifunctional enzyme capable of both synthesis and hydrolysis of the second messenger cyclic ADP-ribose (cADPR). Using the natural substrate of the enzyme, NAD+, the ratio of ADP-ribosyl cyclase/NAD glycohydrolase of CD38 is about 1/100. Here we describe that human seminal fluid contain a soluble CD38 like enzyme with an apparent M.W. of 49 kDa. When purified this enzyme has a cyclase/NAD glycohydrolase ratio of about 1/120. However, the in situ cyclase/NAD glycohydrolase ratio measured in seminal plasma approaches 1/1. We also found that physiological concentrations of zinc present in the seminal fluid, in the range of 0.6 to 4 mM, are responsible for the modulation of the cyclase/NAD glycohydrolase ratio. This new information indicates that the cyclase/NAD glycohydrolase ratio can be modified in vivo.  相似文献   

9.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

10.
Cyclic ADP-ribose, a metabolite of NAD+, is known to modulate intracellular calcium levels and signaling in various cell types, including neural cells. The enzymes responsible for producing cyclic ADP-ribose in the cytoplasm of mammalian cells remain unknown; however, two mammalian enzymes that are capable of producing cyclic ADP-ribose extracellularly have been identified, CD38 and CD157. The present study investigated whether an ADP-ribosyl cyclase/NAD+-glycohydrolase independent of CD38 is present in brain tissue. To address this question, NAD+ metabolizing activities were accurately examined in developing and adult Cd38-/- mouse brain protein extracts and cells. Low ADP-ribosyl cyclase and NAD+-glycohydrolase activities (in the range of pmol of product formed/mg of protein/min) were detected in Cd38-/- brain at all developmental stages studied. Both activities were found to be associated with cell membranes. The activities were significantly higher in Triton X-100-treated neural cells compared with intact cells, suggesting an intracellular location of the novel cyclase. The cyclase and glycohydrolase activities were optimal at pH 6.0 and were inhibited by zinc, properties which are distinct from those of CD157. Both activities were enhanced by guanosine 5'-O-(3-thiotriphosphate), a result suggesting that the novel enzyme may be regulated by a G protein-dependent mechanism. Altogether our results indicate the presence of an intracellular membrane-bound ADP-ribosyl cyclase/NAD+-glycohydrolase distinct from CD38 and from CD157 in mouse brain. This novel enzyme, which is more active in the developing brain than in the adult tissue, may play an important role in cyclic ADP-ribose-mediated calcium signaling during brain development as well as in adult tissue.  相似文献   

11.
Arabidopsis mitochondria contain two NAD(+)-malic enzymes, NAD-ME1 and NAD-ME2. These proteins have similar affinity for their substrates but display opposite regulation by fumarate, which strongly stimulates NAD-ME1 but inhibits NAD-ME2 activity. Here, the interaction of NAD-ME1 and -2 with fumarate was investigated by kinetic approaches, urea denaturation assays and intrinsic fluorescence quenching, in the absence and presence of NAD(+). Fumarate inhibited NAD-ME2 at saturating, but not at low, levels of NAD(+), and it behaved as competitive inhibitor with respect to L-malate. In contrast, NAD-ME1 fumarate activation was higher at suboptimal NAD(+) concentrations. In the absence of cofactor, the fluorescence of both NAD-ME1 and -2 is quenched by fumarate. However, for NAD-ME2 the quenching arises from a collisional phenomenon, while in NAD-ME1 the fluorescence decay can be explained by a static process that involves fumarate binding to the protein. Furthermore, the residue Arg84 of NAD-ME1 is essential for fumarate binding, as the mutant protein R84A exhibits a collisional quenching by this metabolite. Together, the results indicate that the differential fumarate regulation of Arabidopsis NAD-MEs, which is further modulated by NAD(+) availability, is related to the gaining of an allosteric site for fumarate in NAD-ME1 and an active site-associated inhibition by this C(4)-organic acid in NAD-ME2.  相似文献   

12.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is involved in DNA repair and activated by DNA damage. When activated, PARP-1 consumes NAD(+) to form ADP-ribose polymers on acceptor proteins. Extensive activation of PARP-1 leads to glycolytic blockade, energy failure, and cell death. These events have been postulated to result from NAD(+) depletion. Here, we used primary astrocyte cultures to directly test this proposal, utilizing the endogenous expression of connexin-43 hemichannels by astrocytes to manipulate intracellular NAD(+) concentrations. Activation of PARP-1 with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) produced NAD(+) depletion, glycolytic blockade, and cell death. Cultures incubated in high (10mM) extracellular concentrations of NAD(+) after MNNG exposure showed normalization of intracellular NAD(+) concentrations. Repletion of intracellular NAD(+) in this manner completely restored glycolytic capacity and prevented cell death. These results suggest that NAD(+) depletion is the cause of glycolytic failure after PARP-1 activation.  相似文献   

13.
The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD(+) and hydrolysis of either NAD(+) or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD(+) glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a approximately 43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the approximately 43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.  相似文献   

14.
ADP-ribosyl cyclase activities in cultured rat astrocytes were examined by using TLC for separation of enzymatic products. A relatively high rate of [3H]cyclic ADP-ribose production converted from [3H]NAD+ by ADP-ribosyl cyclase (2.015+/-0.554 nmol/min/mg of protein) was detected in the crude membrane fraction of astrocytes, which contained approximately 50% of the total cyclase activity in astrocytes. The formation rate of [3H]ADP-ribose from cyclic ADP-ribose by cyclic ADP-ribose hydrolase and/or from NAD+ by NAD glycohydrolase was low and enriched in the cytosolic fraction. Although NAD+ in the extracellular medium was metabolized to cyclic ADP-ribose by incubating cultures of intact astrocytes, the presence of Triton X-100 in the medium for permeabilizing cells increased cyclic ADP-ribose production three times as much. Isoproterenol and GTP increased [3H]cyclic ADP-ribose formation in crude membrane-associated cyclase activity. This isoproterenol-induced stimulation of membrane-associated ADP-ribosyl cyclase activity was confirmed by cyclic GDP-ribose formation fluorometrically. This stimulatory action was blocked by prior treatment of cells with cholera toxin but not with pertussis toxin. These results suggest that ADP-ribosyl cyclase in astrocytes has both extracellular and intracellular actions and that signals of beta-adrenergic stimulation are transduced to membrane-bound ADP-ribosyl cyclase via G proteins within cell surface membranes of astrocytes.  相似文献   

15.
The chemical synthesis of adenosine(5') [alpha-thio]diphospho(5')ribofuranosyl-nicotinamide (NAD[S]) is described. The product occurs as a pair of diastereomers with different configuration at the sulfur-bearing phosphorus atom. The diastereomers were separated by high-performance liquid chromatography and their absolute configuration was determined after chemical degradation to the ADP[alpha S] diastereomers and chromatographic comparison with enzymically synthesized ADP[alpha S] diastereomers of known absolute configuration. Additional support for this assignment is based on different rates in the phosphodiesterase-catalyzed hydrolysis. Furthermore the synthesis of [14C]NAD[S] is described. The coenzyme activity of NAD[S] in the reaction with alcohol dehydrogenase from baker's yeast and lactate dehydrogenase from pig heart is very similar to that of beta-NAD. Also, NAD and NAD[S] serve equally well as substrates for NAD glycohydrolase from calf spleen. In contrast, no reaction was detected with NAD pyrophosphorylase, and hydrolysis of the separated NAD[S] diastereomers with snake venom phosphodiesterase showed a 26-fold and a 33-fold slower reaction rate than that of NAD. Nucleotide pyrophosphatase was less sensitive to the S substitution, hydrolyzing NAD[S] 14-times slower than NAD. Poly(ADP-ribose) polymerase from Ehrlich ascites tumor cell nuclei accepted NAD[S] as a substrate but the reaction was significantly slower and approached saturation at much lower values than with NAD. Alkaline hydrolysis of the products insoluble in trichloroacetic acid yielded AMP[S] as the main derivative. It is concluded that with NAD[S] as a substrate the nuclear acceptors were nearly exclusively mono(ADP-ribosyl) ated .  相似文献   

16.
CD38 is a bifunctional ectoenzyme synthesizing from NAD(+) (ADP-ribosyl cyclase) and degrading (hydrolase) cyclic ADP-ribose (cADPR), a powerful universal calcium mobilizer from intracellular stores. Recently, hexameric connexin 43 (Cx43) hemichannels have been shown to release cytosolic NAD(+) from isolated murine fibroblasts (Bruzzone, S., Guida, L., Zocchi, E., Franco, L. and De Flora, A. (2001) FASEB J. 15, 10-12), making this dinucleotide available to the ectocellular active site of CD38. Here we investigated transwell co-cultures of CD38(+) (transfected) and CD38(-) 3T3 cells in order to establish the role of extracellular NAD(+) and cADPR on [Ca(2+)](i) levels and on proliferation of the CD38(-) target cells. CD38(+), but not CD38(-), feeder cells induced a [Ca(2+)](i) increase in the CD38(-) target cells which was comparable to that observed with extracellular cADPR alone and inhibitable by NAD(+)-glycohydrolase or by the cADPR antagonist 8-NH(2)-cADPR. Addition of recombinant ADP-ribosyl cyclase to the medium of CD38(-) feeders induced sustained [Ca(2+)](i) increases in CD38(-) target cells. Co-culture on CD38(+) feeders enhanced the proliferation of CD38(-) target cells over control values and significantly shortened the S phase of cell cycle. These results demonstrate a paracrine process based on Cx43-mediated release of NAD(+), its CD38-catalyzed conversion to extracellular cADPR, and influx of this nucleotide into responsive cells to increase [Ca(2+)](i) and stimulate cell proliferation.  相似文献   

17.
Cyclic ADP-ribose (cADPR), a natural metabolite of beta-NAD(+), is a second messenger for Ca(2+) signaling in T cells. As a tool for purification and identification of ADP-ribosyl cyclase(s) in T cells, a sensitive and specific enzymatic assay using 1,N(6)-etheno-NAD(+) as substrate was developed. A major problem-the sensitivity of 1,N(6)-etheno-cADPR toward the extraction medium perchloric acid-was solved by replacing the perchloric acid extraction procedure of nucleotides by a filtration step. Standard compounds for the HPLC analysis of ADP-ribosyl cyclases and NAD(+)-glycohydrolases, e.g., 1,N(6)-etheno-cADPR, 1,N(6)-etheno-ADPR, and 1,N(6)-etheno-AMP, were produced by ADP-ribosyl cyclase from Aplysia californica and dinucleotide pyrophosphatase. The assay was applied to subcellular fractions prepared from human Jurkat T cells. As a result ADP-ribosyl cyclase and NAD(+)-glycohydrolase activity could be detected and precisely quantified in different subcellular fractions indicating the presence of different isoenzymes in T cells.  相似文献   

18.
《Free radical research》2013,47(6):397-402
The nicotinamide adenine dinucleotide dimers (NAD)2 obtained by electrochemical reduction of NAD+ are oxidized by adriamycin in anaerobic photocatalyzed reaction yielding NAD+ and 7-deoxyadriamyci-none. Under the same conditions NADH is not oxidized.  相似文献   

19.
An integrated NAD+-dependent enzyme field-effect transistor (ENFET) device for the biosensing of lactate is described. The aminosiloxane-functionalized gate interface is modified with pyrroloquinoline quinone (PQQ) that acts as a catalyst for the oxidation of NADH. Synthetic amino-derivative of NAD+ is covalently linked to the PQQ monolayer. An affinity complex formed between the NAD+/PQQ-assembly and the NAD+-cofactor-dependent lactate dehydrogenase (LDH) is crosslinked and yields an integrated biosensor ENFET-device for the analysis of lactate. Biocatalyzed oxidation of lactate generates NADH that is oxidized by PQQ in the presence of Ca2+-ions. The reduced catalyst, PQQH2, is oxidized by O2 in a process that constantly regenerates PQQ at the gate interface. The biocatalyzed formation of NADH and the O2-stimulated regeneration of PQQ yield a steady-state pH gradient between the gate interface and the bulk solution. The changes in the pH of the solution near the gate interface and, consequently, the gate potential are controlled by the substrate (lactate) concentration in the solution. The device reveals the detection limit of 1 x 10(-4) M for lactate and the sensitivity of 24+/-2 mV dec(-1). The response time of the device is as low as 15 s.  相似文献   

20.
We have developed a liquid chromatographic-tandem mass spectrometric method that is sensitive and specific and that simultaneously measures cellular NAD(+) and related compounds. Using this method, NAD(+), NAAD, NMN, NAMN, NAM, NA, ADPR, and 5'AMP were first separated over a reverse-phase high-performance liquid chromatography resin in a mobile ammonium formate-methanol linear gradient. Then each compound was ionized at an electrospray source and detected in the positive multiple reaction monitoring mode of a triple-quadrupole tandem mass spectrometer. We found a good linear response for each NAD(+)-related compound. The limits of quantification for NAD(+) and related compounds range from 0.1 to 1 pmol. The extraction efficiency of NAD(+) and related compounds from mouse erythrocytes is between 84 and 114%. The coefficients of variation for the analyses are all less than 6%. Using our method, we measured, in a single analysis, the amounts of NMN, NAMN, NAD(+), and 5'AMP present in mouse erythrocytes. Additionally, this is the first report of a direct determination of the amounts of NMN and NAMN present in any type of cell. These results indicate that our method sensitively, specifically, and simultaneously measures cellular NAD(+) and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号