首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Octamer-primed sequencing is a directed DNA sequencing strategy that employs the use of a presynthesized octamer primer library. Together with electronic octamer sequencing technology (eOST) it provides a faster, less expensive way to obtain DNA sequence information and can be used as a valuable tool for gap closure in large-scale genomic sequencing. In this paper we discuss the effect of dGTP/TTP supplementation on octamer sequencing. We show that addition of 75 µM dGTP and 5 µM TTP can improve the sequencing success rate by increasing the length and accuracy of generated sequence information. We also discuss the effect of template base composition immediately downstream of the octamer primer on the outcome of octamer sequencing.  相似文献   

2.
PRIMO is a computer program that designs walking primers for large-scale DNA sequencing projects. Oligonucleotide primers are predicted automatically, using quality information associated with each base call, eliminating the need for manually viewing the sequence traces or inspecting contig assemblies to determine appropriate locations for primer design. This allows PRIMO to run in batch mode on an arbitrarily large number of templates. For shotgun sequencing, PRIMO reads assembled sequence contigs with corresponding base quality statistics and automatically designs walking primers as needed to extend and join contigs, or improve their overall quality. In the opposite extreme of single-pass or completely directed sequencing, PRIMO reads the unassembled sequence for each template and designs walking primers for extending each read. If the base-calling software does not provide base quality statistics, PRIMO assigns its own measure of base quality determined by the shapes of individual peaks in the trace data for each template. In this way, PRIMO can be used in the finishing stages of a shotgun sequencing project, in sequencing by directed primer walking, or in some intermediate strategy. The code is written in ANSI C and maintained in two versions: one for the Macintosh and the other for UNIX.  相似文献   

3.
Octamer-primed cycle sequencing using dye-terminator chemistry.   总被引:2,自引:2,他引:0       下载免费PDF全文
Octamer Sequencing Technology, OST, is a method of DNA sequencing using single octamer oligonucleotides to prime cycle sequencing reactions. This sequencing strategy is faster than a traditional primer-walking strategy, since access to this optimized octamer library eliminates delays associated with designing and synthesizing gene specific primers. In this report, OST has been optimized for fluorescent, dye-terminator cycle sequencing reactions to facilitate parallel processing of samples. The successful adaptation of OST to an automated sequencing platform and the design of and access to an octamer library are critical steps towards developing an efficient 'closed-loop' DNA sequencing system.  相似文献   

4.
A method for the preparation of P1 DNA is presented, which allows the direct sequencing of ends of inserts in genomic P1 clones using the Applied Biosystems 373A DNA Sequencer and the Dye Terminator sequencing methodology. We surveyed several common methods of DNA preparation including alkaline lysis, Triton-lysozyme lysis, CsCl density-gradient purification, and a commercial column matrix DNA purification kit manufactured by Qiagen. We found that a modified alkaline lysis preparation of P1 DNA was most successful for generating P1 DNA that could be sequenced directly. We also noted that the host bacterial strain from which the P1 DNA was purified dramatically affected the quality of sequencing templates. The bacterial strains NS3145 and NS3529, in which the Drosophila melanogaster and human P1 genomic libraries are harbored, routinely yielded poor-quality sequencing templates. However, the bacterial strain DH10B routinely yielded P1 DNA that was sequenced successfully. A bacterial mating scheme is presented that exploits γδ transposition events to allow the transfer of P1 clones from the library host strain to DH10B. Using either an SP6 or a T7 primer, an average of 350 base pairs of DNA sequence was obtained with an uncalled base frequency of ∼2%. About 4% of P1 end sequences generated corresponded to unique Drosophila loci present in the Genbank database. These single-pass DNA sequences were used to design sequence-tagged site markers for physical mapping studies in both humans and Drosophila.  相似文献   

5.
比较了一些影响荧光终止法PCR循环测序反应的因素。实验结果显示在Beckman CEQ2000自动测序仪上,可读序列长度随着pUC18模板量增加而逐渐增多,当模板量达到125ng时DNA可读序列最长,以后随着pUC18量增加测序长度逐渐下降。当引物量是1μl时,其测序结果比用0.5μl引物时好。在同样模板量情况下,10μl反应体积比5μl反应体积可读序列长。  相似文献   

6.
A strategy for rapid DNA sequence acquisition in an ordered, nonrandom manner, while retaining all of the conveniences of the dideoxy method with M13 transducing phage DNA template, is described. Target DNA 3 to 14 kb in size can be stably carried by our M13 vectors. Suitable targets are stretches of DNA which lack an enzyme recognition site which is unique on our cloning vectors and adjacent to the sequencing primer; current sites that are so useful when lacking are Pst, Xba, HindIII, BglII, EcoRI. By an in vitro procedure, we cut RF DNA once randomly and once specifically, to create thousands of deletions which start at the unique restriction site adjacent to the dideoxy sequencing primer and extend various distances across the target DNA. Phage carrying a desired size of deletions, whose DNA as template will give rise to DNA sequence data in a desired location along the target DNA, may be purified by electrophoresis alive on agarose gels. Phage running in the same location on the agarose gel thus conveniently give rise to nucleotide sequence data from the same kilobase of target DNA.  相似文献   

7.
Exoquence DNA sequencing.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have developed a strategy for DNA sequencing based on exonuclease III digestion followed by double strand specific endonuclease digestion and direct dideoxynucleotide sequencing reaction. This strategy eliminates the need for subcloning, oligonucleotide primers, and prior knowledge of the DNA to be sequenced. All template and primer duplexes needed for sequencing a complete insert can be prepared in one day from uncharacterized starting DNA. Sequence information can be obtained from different regions of the DNA simultaneously. The method uses double-stranded DNA to generate single-stranded template and primer, and thus produces high quality sequence results. Commercially available dideoxy-sequencing kits are well suited for this method. The strategy should be applicable for both automatic and routine laboratory DNA sequencing.  相似文献   

8.
9.
A method for sequencing single-stranded cloned DNA in both directions   总被引:20,自引:0,他引:20  
A DNA sequencing method has been developed whereby DNA that has been cloned in a single-stranded bacteriophage vector can be sequenced from both ends. The method involves first making a minus-strand sense template from a single-stranded insert in the vector MJ3mp2 using a flanking primer, and then sequencing the synthesized template using the dideoxynucleotide termination method (Sangeret al., 1977, 1980) with a second primer. Special conditions are described under which the first primer is easily removed after making the templat% and sequencing in the opposite direction can be done in the normal way (Sangeret al., 1980) without separating the double strands. This method renders it possible to read up to twice the amount of sequence data from a long insert and also to check short inserts by producing complementary sequence patterns.  相似文献   

10.
《Genomics》1999,55(2):135-146
A human mitochondrial DNA (mtDNA) standard reference material (SRM 2392) will provide quality control when mtDNA is sequenced for forensic identifications, medical diagnosis, or mutation detection. SRM 2392 includes DNA from two lymphoblast cell cultures (CHR and 9947A) and cloned DNA from the CHR HV1 region, which contains a C stretch and is difficult to sequence. The mtDNA sequence (but not the DNA) of a third human template GM03798 is provided for comparison. Fifty-eight unique primer sets allow any area or the entire mtDNA (16,569 bp) to be amplified and sequenced. While none of the differences in these three templates correspond to published mutations associated with specific diseases, some of these differences did result in animo acid changes compared with that published by S. Andersonet al.(1981,Nature290: 457–465). An interlaboratory evaluation of the amplification, sequencing, and data analysis of the CHR template was conducted by four laboratories. Corroboration of the SRM results will provide quality assurance that any unknown mtDNA is also being amplified and sequenced correctly.  相似文献   

11.
Recombinant protein translation in Escherichia coli may be limited by stable (i.e. low free energy) secondary structures in the mRNA translation initiation region. To circumvent this issue, we have set-up a computer tool called ‘ExEnSo’ (Expression Enhancer Software) that generates a random library of 8192 sequences, calculates the free energy of secondary structures of each sequence in the 70/+96 region (base 1 is the translation initiation codon), and then selects the sequence having the highest free energy. The software uses this ‘optimized’ sequence to create a 5′ primer that can be used in PCR experiments to amplify the coding sequence of interest prior to sub-cloning into a prokaryotic expression vector. In this article, we report how ExEnSo was set-up and the results obtained with nine coding sequences with low expression levels in E. coli. The free energy of the 70/+96 region of all these coding sequences was increased compared to the non-optimized sequences. Moreover, the protein expression of eight out of nine of these coding sequences was increased in E. coli, indicating a good correlation between in silico and in vivo results. ExEnSo is available as a free online tool.  相似文献   

12.
The sequence of an unknown PCR product generated by random (and conventional) PCR could be determined without sequencing when it is provided with the template DNA sequence. Theoretically, this was based on formerly established ideas which assert that the amount of random PCR product mainly depends on the stability of the primer-binding structures and that the dynamic solution structure of DNA is essentially governed by the Watson–Crick base pairing. However, it has not been clear whether this holds true for larger genomes of mega- to gigabase size, beside the λ phage genome (of 50 kb) used previously, nor has it been ascertained to uniquely specify the sequence of a random PCR product. Here, we jointly use two computer programs together with experimental data from Genome Profiling (i.e. TGGE analysis of random PCR products). The first procedure carried out by a newly remodeled computer program (PCRAna-A1) was shown to be competent to calculate a set of random PCR products from Escherichia coli genome DNA (4.7 Mb). The other procedure performed with another program (Poland-H) played a critical role in determining the final candidate sequence by theoretically offering the initial melting temperature and the melting pattern of unspecified candidate sequences. The success attained here not only proved our method to be useful for sequence prediction but also confirmed the above-mentioned ideas as rational. We believe that this is the first case to computer-utilize a genome sequence as a whole.  相似文献   

13.
14.
We have developed a PCR-based short interfering RNA (siRNA) quantification method based on competition between siRNA and a homologous DNA primer for annealing to template DNA, avoiding the requirement for prior conversion of RNA to cDNA. Primers and probe were designed to amplify regions of the human papillomavirus E6 or enhanced green fluorescent protein genes. Having confirmed siRNA could not act as primer for amplicon generation, the lowest competing primer concentration yielding a linear relationship between template DNA amount (0.1–50 ng) and cycle of threshold (Ct) was determined (6.25 nM). Under these conditions addition of sequence-specific siRNA to the competitive quantitative PCR (cqPCR), resulted in a dose-dependent linear increase in Ct value. 2′-O-methyl ribose-modified siRNA retained an ability to inhibit template amplification in serum, unlike unmodified siRNAs that were susceptible to endonucleases. Mismatch-bearing or truncated siRNAs failed to inhibit template amplification confirming sequence specificity and an ability to discriminate between degraded and non-degraded siRNA sequences. Following delivery of E6 siRNA to C33-A cells using oligofectamine or His6 reducible polymers, siRNA uptake was quantified by cqPCR, revealing dose-dependent uptake. We anticipate that cqPCR will allow accurate determination of siRNA pharmacokinetics following in vivo delivery, greatly facilitating development of therapeutic siRNA delivery strategies.  相似文献   

15.
Rapid determination of short DNA sequences by the use of MALDI-MS   总被引:3,自引:3,他引:0       下载免费PDF全文
We have developed a protocol for rapid sequencing of short DNA stretches (15–20 nt) using MALDI-TOF-MS. The protocol is based on the Sanger concept with the modification that double-stranded template DNA is used and all four sequencing reactions are performed in one reaction vial. The sequencing products are separated and detected by MALDI-TOF-MS and the sequence is determined by comparing measured molecular mass differences to expected values. The protocol is optimized for low costs and broad applicability. One reaction typically includes 300 fmol template, 10 pmol primer and 200 pmol each nucleotide monomer. Neither the primer nor any of the nucleotide monomers are labeled. Solid phase purification, concentration and mass spectrometric sample preparation of the sequencing products are accomplished in a few minutes and parallel processing of 96 samples is possible. The mass spectrometric analyses and subsequent sequence read-out require only a few seconds per template.  相似文献   

16.
A method is described for measuring the diversity of combinatorial oligonucleotide libraries that entails extrapolating the base composition of a co-synthesized model library (dNC, N = A, C, G, T) to that of a multibase library template. The base composition of dNC was measured by HPLC. The ability of dNC to predict the base composition of a multibase library template was corroborated by measuring the composition of a 12 base combinatorial library. The base composition of the 12 base library was determined by several template dependent incorporation assays: measurement of restriction fragment specific activities from polymerase incorporation/restriction enzyme digests, template directed radionucleotide primer extension and quantitative dideoxynucleotide sequencing. Additionally, a convention for describing oligomeric combinatorial library (OCL) diversity is proposed. The convention uses a quantity termed the diversity quotient (Qd) to describe library breadth and the mole fraction of the least represented monomeric unit of the OCL to calculate minimum library quantity requirements. Similar methods/conventions could presumably be developed/adopted for non-nucleic acid libraries.  相似文献   

17.
R K Wilson  C Chen  L Hood 《BioTechniques》1990,8(2):184-189
A high-throughput method for the preparation of single-stranded template DNA, which is suitable for sequence analysis using fluorescent labeling chemistry, is described here. In this procedure, the asymmetric polymerase chain reaction is employed to amplify recombinant plasmid or bacteriophage DNA directly from colonies or plaques. The use of amplification primers located at least 200 base pairs 5' to the site of sequencing primer annealing removes the need for extensive purification of the asymmetric polymerase chain reaction product. Instead, the single-stranded product DNA is purified by a simple isopropanol precipitation step and then directly sequenced using fluorescent dye-labeled oligonucleotides. This method significantly reduces the time and labor required for template preparation and improves fluorescent DNA sequencing strategies by providing a much more uniform yield of single-stranded DNA.  相似文献   

18.

DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2′-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5′-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

19.
The polymerase chain reaction (PCR) is a technique to amplify a specific DNA sequence millions of times. The thermostable enzyme Taq polymerase allows this procedure to take place under conditions of high specificity and automatization. By combining the techniques of PCR and dideoxy sequencing, it is possible to perform DNA sequencing independently of their structures. The cyclic sequencing reaction is carried out in the presence of an excess amount of sequencing primer and a radioactive nucleotide ([alpha-35S]dATP) using a DNA thermal cycler. Different reaction conditions were investigated and optimized including nucleotide ratios in each termination mix, primer/template ratios, amount of a radioactive nucleotide, and the program of the reaction. This method allows the detection of single base substitutions in heterozygous alleles, and the detection of homozygous deletions. A new RFLP of the human porphobilinogen deaminase (PBGD) gene was identified using this technique. This RFLP is created by one base difference (cytosine or adenine) that changes the restriction site for Apa LI. The alternative sequencing method described in this study is a simple and time-saving procedure that can also be used for large sequencing projects.  相似文献   

20.
Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence—GAATTC—in the absence of a Mg2+ ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI–DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号