首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past few years, methods have been developed which allow the introduction of exogenous DNA into the human malaria parasite Plasmodium falciparum. This important technical advance known as parasite transfection, provides powerful new tools to study the function of Plasmodium proteins and their roles in biology and disease. Already it has allowed the analysis of promoter function and has been successfully applied to establish the role of particular molecules and/or mutations in the biology of this parasite. This review summarises the current state of the technology and how it has been applied to dissect the function of the P. falciparum genome.  相似文献   

2.
The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl-CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1alpha, E1beta, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear-encoded proteins are targeted to the apicoplast courtesy of two-part N-terminal leader sequences, and the presence of such N-terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two-part leader sequences from the E1alpha and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1alpha and E1beta PDH subunits in blood-stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl-CoA in the apicoplast, possibly for use in fatty acid biosynthesis.  相似文献   

3.
Because of their inability to synthesize purines de novo, malaria parasites rely on purine phosphoribosyltransferases (PRTases) to convert purine bases salvaged from the host cell (the erythrocyte) into the corresponding purine nucleoside monophosphates. Our studies with late trophozoites of the human malaria parasite, Plasmodium falciparum, showed that virtually all of the purine PRTase activity is accounted for by two distinct enzymes. One enzyme utilizes hypoxanthine, guanine and xanthine (Queen, S.A., Vander Jagt, D. and Reyes, P. (1988) Mol. Biochem. Parasitol. 30, 123-134). The second enzyme utilizes only adenine and is the subject of this paper. This latter enzyme exhibits a biphasic pH-activity profile and is moderately to weakly inhibited by several divalent metal ions. Several of the properties of the P. falciparum enzyme were found to differ significantly from those of human erythrocyte adenine PRTase. (1) The molecular weight (18,000) of the parasite enzyme is smaller than that of the host cell enzyme. (2) The parasite enzyme, unlike the erythrocyte enzyme, is not significantly inhibited by sulfhydryl reagents. (3) 6-Mercaptopurine and 2,6-diaminopurine proved to be competitive inhibitors of the parasite enzyme (Ki 0.70 and 1.0 mM, respectively); on the other hand, the human enzyme is not inhibited by these agents. (4) The Km for adenine (0.80 microM) and 5-phosphoribosyl-1-pyrophosphate (0.70 microM) displayed by the parasite enzyme are significantly smaller than the corresponding Km values shown by the erythrocyte enzyme. These distinctions between the parasite and host enzymes point to the possibility that adenine PRTase of P. falciparum may represent a potential target for chemotherapeutic attack.  相似文献   

4.
Blood collected from rats infected with Plasmodium berghei was centrifuged and the pellet was fixed for 1 hour in 1 per cent buffered OsO(4) with 4.9 per cent sucrose. The material was embedded in n-butyl methacrylate and the resulting blocks sectioned for electron microscopy. The parasites were found to contain, in almost all sections, oval bodies of the same density and structure as the host cytoplasm. Continuity between these bodies and the host cytoplasm was found in a number of electron micrographs, showing that the bodies are formed by invagination of the double plasma membrane of the parasite. In this way the host cell is incorporated by phagotrophy into food vacuoles within the parasite. Hematin, the residue of hemoglobin digestion, was never observed inside the food vacuole but in small vesicles lying around it and sometimes connected with it. The vesicles are pinched off from the food vacuole proper and are the site of hemoglobin digestion. The active double limiting membrane is responsible not only for the formation of food vacuoles but also for the presence of two new structures. One is composed of two to six concentric double wavy membranes originating from the plasma membrane. Since no typical mitochondria were found in P. berghei, it is assumed that the concentric structure performs mitochondrial functions. The other structure appears as a sausage-shaped vacuole surrounded by two membranes of the same thickness, density, and spacing as the limiting membrane of the body. The cytoplasm of the parasite is rich in vesicles of endoplasmic reticulum and Palade's small particles. Its nucleus is of low density and encased in a double membrane. The host cells (reticulocytes) have mitochondria with numerous cristae mitochondriales. In many infected and intact reticulocytes ferritin was found in vacuoles, mitochondria, canaliculi, or scattered in the cytoplasm.  相似文献   

5.
Plasmodium falciparum, the major causative agent of human malaria, contains three separate genomes. The apicoplast (an intracellular organelle) contains an ∼ 35-kb circular DNA genome of unusually high A/T content (> 86%) that is replicated by the nuclear-encoded replication complex Pfprex. Herein, we have expressed and purified the DNA polymerase domain of Pfprex [KPom1 (Klenow-like polymerase of malaria 1)] and measured its fidelity using a LacZ-based forward mutation assay. In addition, we analyzed the kinetic parameters for the incorporation of both complementary and noncomplementary nucleotides using Kpom1 lacking 3′ → 5′ exonucleolytic activity. KPom1 exhibits a strongly biased mutational spectrum in which T → C is the most frequent single-base substitution and differs significantly from the closely related Escherichia coli DNA polymerase I. Using E. coli harboring a temperature-sensitive polymerase I allele, we established that KPom1 can complement the growth-defective phenotype at an elevated temperature. We propose that the error bias of KPom1 may be exploited in the complementation assay to identify nucleoside analogs that mimic this base-mispairing and preferentially inhibit apicoplast DNA replication.  相似文献   

6.
A A Escalante  A A Lal  F J Ayala 《Genetics》1998,149(1):189-202
We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25.  相似文献   

7.
The enzyme hypoxanthine phosphoribosyl transferase of the human malaria parasite Plasmodium falciparum has been located in parasites and parasite-infected erythrocytes by antibody probing. The probe was a polyclonal rabbit antiserum made against the parasite enzyme made in Escherichia coli. The enzyme is associated with membrane-bound compartments in merozoites and asexual blood parasites. In particular, indirect immunofluorescence studies reveal the enzyme localized in vesicle-like structures within the cytoplasm of the infected erythrocyte. This is the first time a P. falciparum protein of defined metabolic function has been tracked to a site outside the parasite cytosol. Studies on the targeting of the enzyme using a cell-free system suggests that the protein reaches its destination via a route different from the normal secretory pathway.  相似文献   

8.
Redox and antioxidant systems of the malaria parasite Plasmodium falciparum   总被引:4,自引:0,他引:4  
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.  相似文献   

9.
Dihydroorotate dehydrogenase (DHODase) has been purified 400-fold from the rodent malaria parasite Plasmodium berghei to apparent homogeneity by Triton X-100 solubilization followed by anion-exchange, Cibacron Blue F3GA-agarose affinity, and gel filtration chromatography. The purified enzyme has a molecular mass of 52 +/- 2 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and of 55 +/- 6 kDa by gel filtration chromatography, and it has a pI of 8.2. It is active in monomeric form, contains 2.022 mol of iron and 1.602 acid-labile sulfurs per mole of enzyme, and does not contain a flavin cofactor. The purified DHODase exhibits optimal activity at pH 8.0 in the presence of the ubiquinone coenzyme CoQ6, CoQ7, CoQ9, or CoQ10. The Km values for L-DHO and CoQ6 are 7.9 +/- 2.5 microM and 21.6 +/- 5.5 microM, respectively. The kcat values for both substrates are 11.44 min-1 and 11.70 min-1, respectively. The reaction product orotate and an orotate analogue, 5-fluoroorotate, are competitive inhibitors of the enzyme-catalyzed reaction with Ki values of 30.5 microM and 34.9 microM, respectively. The requirement of the long-chain ubiquinones for activity supports the hypothesis of the linkage of pyrimidine biosynthesis to the electron transport system and oxygen utilization in malaria by DHODase via ubiquinones [Gutteridge, W. E., Dave, D., & Richards, W. H. G. (1979) Biochim. Biophys. Acta 582, 390-401].  相似文献   

10.
11.
The malaria parasite Plasmodium falciparum degrades hemoglobin in its acidic food vacuole for use as a major nutrient source. A novel metallopeptidase activity, falcilysin, was purified from food vacuoles and characterized. Falcilysin appears to function downstream of the aspartic proteases plasmepsins I and II and the cysteine protease falcipain in the hemoglobin proteolytic pathway. It is unable to cleave hemoglobin or denatured globin but readily destroys peptide fragments of hemoglobin. Falcilysin cleavage sites along the alpha and beta chains of hemoglobin are polar in character, with charged residues located in the P1 and/or P4' positions. In contrast, plasmepsins I and II and falcipain prefer hydrophobic residues around the scissile bond. The gene encoding falcilysin has been cloned. Its coding sequence exhibits features characteristic of clan ME family M16 metallopeptidases, including an "inverted" HXXEH active site motif. Falcilysin shares primary structural features with M16 family members such as insulysin, mitochondrial processing peptidase, nardilysin, and pitrilysin as well as with data base hypothetical proteins that are potential M16 family members. The characterization of falcilysin increases our understanding of hemoglobin catabolism in P. falciparum and the unusual M16 family of metallopeptidases.  相似文献   

12.
13.
We demonstrate, for the first time, a functional polyamine biosynthetic pathway in the malaria parasite Plasmodium falciparum that culminates in the synthesis of spermine. Additionally, we also report putrescine and spermidine salvage in the malaria parasite. Putrescine and spermidine transport in P. falciparum infected red blood cells is a highly specific, carrier mediated and active process, mediated by new transporters that differ from the transporters of uninfected red blood cells in their kinetic parameters, Vmax and km, as well as in their activation energy.  相似文献   

14.
15.
The ultrastructure of the malaria parasite Plasmodium falciparum is well known, both from natural infections and from culture material ( Aikawa , 1977, Langreth et al., 1978). It is noteworthy that all of these studies were done with pyrimethamine-sensitive strains, e.g. FCR-3/Gambia. Except for spindle microtubules during schizogony, no intranuclear structures have been described in any of the asexual erythrocytic stages. In the course of isolating clones from the pyrimethamine-resistant strain Honduras I/CDC (V.K. Bhasin and W. Trager , in print) and checking by electron microscopy for the presence or absence of knobs, we noticed intranuclear structures that might be correlated with pyrimethamine resistance. For comparison, we then examined the multi-drug-resistant strain Indochina 1. We present here a first report on these structures as a basis for further studies.  相似文献   

16.
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.  相似文献   

17.
In most living cells, redox homeostasis is based both on the glutathione and the thioredoxin system. In the malaria parasite Plasmodium falciparum antioxidative proteins represent promising targets for the development of antiparasitic drugs. We cloned and expressed a thioredoxin of P. falciparum (pftrx), and we improved the stable expression of the thioredoxin reductase (PfTrxR) of the parasite by multiple silent mutagenesis. Both proteins were biochemically characterized and compared with the human host thioredoxin system. Intriguingly, the 13-kDa protein PfTrx is a better substrate for human TrxR (K(m) = 2 microm, k(cat) = 3300 min(-)(1)) than for P. falciparum TrxR (K(m) = 10.4 microm, k(cat) = 3100 min(-)(1)). Possessing a midpoint potential of -270 mV, PfTrx was found to reduce the disease-related metabolites S-nitrosoglutathione and GSSG. The rate constant k(2) for the reaction between reduced P. falciparum thioredoxin and GSSG was determined to be 0.039 microm(-)(1) min(-)(1) at 25 degrees C and pH 7.4. The k(2) for thioredoxins from man, Drosophila melanogaster, and Escherichia coli was approximately 5 times lower. Our data suggest that GSSG reduction can be supported at a high rate by the TrxR/Trx system in glutathione reductase-deficient cells; this may be relevant for certain stages of the malarial parasite but also for cells containing high [GSSG] of other organisms like dormant forms of Neurospora, glutathione reductase-deficient yeast mutants, or CD4(+) lymphocytes of AIDS patients.  相似文献   

18.
Unlike most eukaryotes, many apicomplexan parasites contain only a few unlinked copies of ribosomal RNA (rRNA) genes. Based on stage-specific expression of these genes and structural differences among the rRNA molecules it has been suggested that Plasmodium spp. produce functionally different ribosomes in different developmental stages. This hypothesis was investigated through comparison of the structure of the large subunit rRNA molecules of the rodent malaria parasite, Plasmodium berghei, and by disruption of both of the rRNA gene units that are transcribed exclusively during development of this parasite in the mosquito (S-type rRNA gene units). In contrast to the human parasite, Plasmodium falciparum, we did not find evidence of structural differences in core regions of the distinct large subunit rRNAs which are known to be associated with catalytic activity including the GTPase site that varies in P. falciparum. Knockout P. berghei parasites lacking either of the S-type gene units were able to complete development in both the vertebrate and mosquito hosts. These results formally exclude the hypothesis that two functionally different ribosome types distinct from the predominantly blood stage-expressed A-type ribosomes, are required for development of all Plasmodium species in the mosquito. The maintenance of two functionally equivalent rRNA genes might now be explained as a gene dosage phenomenon.  相似文献   

19.
Recent advances have provided a working interactome map for the human malaria parasite Plasmodium falciparum. The aforementioned map, generated from genome-scale analyses, has provided a basis for proteomic studies of the parasite; however, such large-scale approaches commonly suffer from undersampling and lack of coverage. The current map bears no exception, containing only one-quarter of the organism's proteins. Inspired by the needs of the current map and the wealth of bioinformatics data, we assembled a map of 19 979 interactions among 2321 proteins in P. falciparum. The resultant map was generated by computationally inferring protein-protein interactions from evolutionarily conserved protein interactions, underlying domain interactions, and experimental observations. To compile this information into a repository of meaningful data, we assessed interaction quality by applying a logistic regression method, which correlated the presence of an interaction with relevant cellular parameters. Interestingly, it was found that sub-networks from different sources are quite dissimilar in their topologies and overlap to a very small extent. Applying Markov clustering, we observe a typical cluster composition, featuring common cellular functions that were previously reported absent, making this map a valuable resource for understanding the biology of this organism.  相似文献   

20.
Barry AE  Leliwa-Sytek A  Man K  Kasper JM  Hartl DL  Day KP 《Gene》2006,376(2):163-173
An analysis of the diversity of the aspartyl proteases of Plasmodium falciparum, known as plasmepsins (PMs), was completed in view of their possible role as drug targets. DNA sequence polymorphisms were identified in nine pm genes including their non-coding (introns and 5' flanking) sequences. All genes contained at least one single nucleotide polymorphism (SNP). Extensive microsatellite diversity was observed predominantly in non-coding sequences. All but one non-synonymous polymorphism (a conservative substitution) were mapped to the surface of the predicted protein, contradicting a possible role in enzymatic activity. The distribution of SNPs was found to be non-random among pm genes, with pm6 and pm10 having significantly higher SNP densities, suggesting they were under selection. For pm6 the majority of the SNPs were in introns and some of these may contribute to splice site variation. SNPs were found at a high density in both the coding and non-coding sequences of pm10. Recombination was important in generating additional diversity at this locus. Although direct selection for pm10 mutations could not be ruled out, the presence of balancing selection and a high density of SNPs in non-coding sequence led us to propose that another gene under selection may be influencing the diversity in the region. By sequencing short DNA tags in a 200 kb region flanking pm10 we show that a cluster of antigen genes, known to be under diversifying selection, may contribute to the observed diversity. We discuss the importance of diversity and local selection effects when choosing drug targets for intervention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号