首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that causes watery diarrhea and hemorrhagic colitis. In this study, we identified StcE, a secreted zinc metalloprotease that contributes to intimate adherence of EHEC to host cells, in culture supernatants of atypical Shigella boydii 13 (Shigella B13) strains. Further examination of the Shigella B13 strains revealed that this cluster of pathogens does not invade but forms pedestals on HEp-2 cells similar to EHEC and enteropathogenic E.?coli. This study also demonstrates that atypical Shigella B13 strains are more closely related to attaching and effacing E.?coli and that their evolution recapitulates the progression from ancestral E.?coli to EHEC.  相似文献   

2.
Mucins secreted from the gastrointestinal epithelium form the basis of the adherent mucus layer which is the host's first line of defense against invasion by Entamoeba histolytica. Galactose and N-acetyl-D-galactosamine residues of mucins specifically inhibit binding of the amebic 170 kDa heavy subunit Gal-lectin to target cells, an absolute prerequisite for pathogenesis. Herein we characterized the secretory mucins isolated from the human colon and from three human colonic adenocarcinoma cell lines: two with goblet cell-like (LS174T and T84) and one with absorptive cell-like morphology (Caco-2). By Northern blot analysis the intestinal mucin genes MUC2 and MUC3 were constitutively expressed by confluent LS174T and Caco-2 cells, whereas T84 cells only transcribed MUC2 and not MUC3 mRNA. 3H-glucosamine and 3H-threonine metabolically labeled proteins separated as high Mr mucins in the void (Vo > 106 Da) of Sepharose-4B column chromatography and remained in the stacking gel of SDS-PAGE as depicted by fluorography. All mucin preparations contained high amounts of N-acetyl-glucosamine, galactose, N-acetyl-galactosamine, fucose and sialic acid, saccharides typical of the O-linked carbohydrate side chains. Mucin samples from the human colon and from LS174T and Caco-2 cells inhibited E. histolytica adherence to Chinese hamster ovary cells, whereas mucins from T84 cells did not. These results suggest that genetic heterogeneity and/or posttranslational modification in glycosylation of colonic mucins can affect specific epithelial barrier function against intestinal pathogens.  相似文献   

3.
Gastrointestinal (GI) pathogens enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), and related mouse pathogen Citrobacter rodentium, are referred to as attaching and effacing (AE) pathogens for the lesions they form upon colonisation of the host epithelium. EPEC, EHEC, and C. rodentium are well known to use a type III secretion system to intimately attach to intestinal cells and secrete bacterial effectors to manipulate host cell processes. Less well known is the ability of AE pathogens to overcome significant physiological and microbial barriers and target specific gut niches for initial colonisation of the host epithelium. This review considers recent work highlighting the biogeography of the GI tract as it applies to colonisation by enteric pathogens, including environmental barriers to enteric infection, signals sensed by AE pathogens for navigation of the GI tract, and the tools AE pathogens use to respond to the changing host environment.  相似文献   

4.
Enterohaemorrhagic Escherichia coli (EHEC) causes life‐threatening infections in humans as a consequence of the production of Shiga‐like toxins. Lack of a good animal model system currently hinders in vivo study of EHEC virulence by systematic genetic methods. Here we applied the genetically tractable animal, Caenorhabditis elegans, as a surrogate host to study the virulence of EHEC as well as the host immunity to this human pathogen. Our results show that E. coli O157:H7, a serotype of EHEC, infects and kills C. elegans. Bacterial colonization and induction of the characteristic attaching and effacing (A/E) lesions in the intact intestinal epithelium of C. elegans by E. coli O157:H7 were concomitantly demonstrated in vivo. Genetic analysis indicated that the Shiga‐like toxin 1 (Stx1) of E. coli O157:H7 is a virulence factor in C. elegans and is required for full toxicity. Moreover, the C. elegans p38 mitogen‐activated protein kinase (MAPK) pathway, anevolutionarily conserved innate immune and stress response signalling pathway, is activated in the regulation of host susceptibility to EHEC infection in a Stx1‐dependent manner. Our results validate the EHEC–C. elegans interaction as suitable for future comprehensive genetic screens for both novel bacterial and host factors involved in the pathogenesis of EHEC infection.  相似文献   

5.
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.  相似文献   

6.
Escherichia coli O157∶H7 is a human enteric pathogen that causes hemorrhagic colitis which can progress to hemolytic uremic syndrome, a severe kidney disease with immune involvement. During infection, E. coli O157∶H7 secretes StcE, a metalloprotease that promotes the formation of attaching and effacing lesions and inhibits the complement cascade via cleavage of mucin-type glycoproteins. We found that StcE cleaved the mucin-like, immune cell-restricted glycoproteins CD43 and CD45 on the neutrophil surface and altered neutrophil function. Treatment of human neutrophils with StcE led to increased respiratory burst production and increased cell adhesion. StcE-treated neutrophils exhibited an elongated morphology with defective rear detachment and impaired migration, suggesting that removal of the anti-adhesive capability of CD43 by StcE impairs rear release. Use of zebrafish embryos to model neutrophil migration revealed that StcE induced neutrophil retention in the fin after tissue wounding, suggesting that StcE modulates neutrophil-mediated inflammation in vivo. Neutrophils are crucial innate effectors of the antibacterial immune response and can contribute to severe complications caused by infection with E. coli O157∶H7. Our data suggest that the StcE mucinase can play an immunomodulatory role by directly altering neutrophil function during infection. StcE may contribute to inflammation and tissue destruction by mediating inappropriate neutrophil adhesion and activation.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections cause serious public health problems worldwide. The translocation intimin receptor (Tir) is responsible for adhesion and attaching and effacing lesions. In the current study, we used a mitomycin-treated mouse model to evaluate the efficacy of subcutaneous vs intranasal administration of the recombinant Tir as vaccine. Following immunization, mice were infected with E. coli O157:H7 and faces were monitored for shedding. Mice immunized intrasally with purified Tir proteins produced higher IgG and IgA titers in serum and feces, resulting in significant reductions in fecal shedding of EHEC O157 and higher a survival rate (92.9%), compared with subcutaneous or control immunizations. These results demonstrate the potential for the use of Tir proteins in mucosal vaccine formulations to prevent colonization and shedding of E. coli O157:H7. Therefore, purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate.  相似文献   

8.
We used bovine intestinal organ culture to study infection by enterohemorrhagic Escherichia coli serogroups O157, O26, and O111. We show colonization and attaching and effacing lesion formation on explants derived from the ileum, colon, and rectum. Intimin and Tir were detected at the sites of adherent bacteria; Tir was essential for colonization.  相似文献   

9.
The mucus layer coating the gastrointestinal tract serves as the first line of intestinal defense against infection and injury. Probiotics promote mucin production by goblet cells in the intestine. p40, a Lactobacillus rhamnosus GG-derived soluble protein, has been shown to transactivate the EGF receptor (EGFR) in intestinal epithelial cells, which is required for inhibition of apoptosis and preservation of barrier function in the colon, thereby ameliorating intestinal injury and colitis. Because activation of EGFR has been shown to up-regulate mucin production in goblet cells, the purpose of this study was to investigate the effects and mechanisms of p40 regulation of mucin production. p40 activated EGFR and its downstream target, Akt, in a concentration-dependent manner in LS174T cells. p40 stimulated Muc2 gene expression and mucin production in LS174T cells, which were abolished by inhibition of EGFR kinase activity, down-regulation of EGFR expression by EGFR siRNA transfection, or suppression of Akt activation. Treatment with p40 increased mucin production in the colonic epithelium, thus thickening the mucus layer in the colon of wild type, but not of Egfrwa5 mice, which have a dominant negative mutation in the EGFR kinase domain. Furthermore, inhibition of mucin-type O-linked glycosylation suppressed the effect of p40 on increasing mucin production and protecting intestinal epithelial cells from TNF-induced apoptosis in colon organ culture. Thus, these results suggest that p40-stimulated activation of EGFR mediates up-regulation of mucin production, which may contribute to the mechanisms by which p40 protects the intestinal epithelium from injury.  相似文献   

10.
11.

Background  

In silico techniques are highly suited for both the discovery of new and development of existing vaccines. Enterohemorrhagic Escherichia coli O157:H7 (EHEC) exhibits a pattern of localized adherence to host cells, with the formation of microcolonies, and induces a specific histopathological lesion (attaching/effacing). The genes encoding the products responsible for this phenotype are clustered on a 35-kb pathogenicity island. Among these proteins, Intimin, Tir, and EspA, which are expressed by attaching-effacing genes, are responsible for the attachment to epithelial cell that leads to lesions.  相似文献   

12.
Enterohemorrhagic Escherichia coli (EHEC) exhibits a pattern of localized adherence to host cells, with the formation of microcolonies, and induces a specific histopathological phenotype collectively known as the attaching and effacing lesion. The genes encoding the products responsible for this phenotype are located on a 35-kb pathogenicity island designated the locus of enterocyte effacement, which is also shared by enteropathogenic E. coli. We have identified an open reading frame (ORF) which is located upstream of the espA, espB, and espD genes on the complementary strand and which exhibits high homology to the genes spiB from Salmonella, yscD from Yersinia, and pscD from Pseudomonas. Localization studies showed that the encoded product is present in the cytoplasmic and inner membrane fractions of EHEC. The construction and characterization of a recombinant clone containing an in-frame deletion of this ORF demonstrated that the encoded product is a putative member of a type III system required for protein secretion. Disruption of this ORF, designated pas (protein associated with secretion), abolished the secretion of Esp proteins. The mutant adhered only poorly and lost its capacities to trigger attaching and effacing activity and to invade HeLa cells. These results demonstrate that Pas is a virulence-associated factor that plays an essential role in EHEC pathogenesis.  相似文献   

13.
The StcE zinc metalloprotease is secreted by enterohemorrhagic Escherichia coli (EHEC) O157:H7 and contributes to intimate adherence of this bacterium to host cells, a process essential for mammalian colonization. StcE has also been shown to localize the inflammatory regulator C1 esterase inhibitor (C1-INH) to cell membranes. We tried to more fully characterize StcE activity to better understand its role in EHEC pathogenesis. StcE was active at pH 6.1 to 9.0, in the presence of NaCl concentrations ranging from 0 to 600 mM, and at 4 degrees C to 55 degrees C. Interestingly, antisera against StcE or C1-INH did not eliminate StcE cleavage of C1-INH. Treatment of StcE with the proteases trypsin, chymotrypsin, human neutrophil elastase, and Pseudomonas aeruginosa elastase did not eliminate StcE activity against C1-INH. After StcE was kept at 23 degrees C for 65 days, it exhibited full proteolytic activity, and it retained 30% of its original activity after incubation for 8 days at 37 degrees C. Together, these results show the StcE protease is a stable enzyme that is probably active in the environment of the colon. Additionally, k(cat)/K(m) data showed that StcE proteolytic activity was 2.5-fold more efficient with the secreted mucin MUC7 than with the complement regulator C1-INH. This evidence supports a model which includes two roles for StcE during infection, in which StcE acts first as a mucinase and then as an anti-inflammatory agent by localizing C1-INH to cell membranes.  相似文献   

14.
Mucin glycoproteins with large numbers of O-linked glycosylations comprise the mucosal barrier lining the mammalian gastrointestinal tract from mouth to gut. A critical biological function of mucins is to protect the underlying epithelium from infection. Enterohemorrhagic Escherichia coli (EHEC), the mediator of severe food- and water-borne disease, can breach this barrier and adhere to intestinal cells. StcE, a ~100 kDa metalloprotease secreted by EHEC, plays a pivotal role in remodeling the mucosal lining during infection. To obtain mechanistic insight into its function, we have determined the structure of StcE. Our data reveal a dynamic, multidomain architecture featuring an unusually large substrate-binding cleft and a prominent polarized surface charge distribution highly suggestive of an electrostatic role in substrate targeting. The observation of key conserved motifs in the active site allows us to propose the structural basis for the specific recognition of α-O-glycan-containing substrates. Complementary biochemical analysis provides further insight into its distinct substrate specificity and binding stoichiometry.  相似文献   

15.

Background  

In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y. pestis, which are still putatively functional in Y. pseudotuberculosis and may be important in the enteric lifestyle. One such gene, YPTB1572 in the Y. pseudotuberculosis IP32953 genome sequence, encodes a protein with similarity to invasin, a classic adhesion/invasion protein, and to intimin, the attaching and effacing protein from enteropathogenic (EPEC) and enterohaemorraghic (EHEC) Escherichia coli.  相似文献   

16.
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are diarrhoeal pathogens that cause the formation of attaching and effacing (A/E) lesions on infected host cells. These pathogens encode a type III secretion system (T3SS) used to inject effector proteins directly into host cells, an essential requirement for virulence. In this study, we identified a function for the type III secreted effector EspZ. Infection with EPEC ΔespZ caused increased cytotoxicity in HeLa and MDCK cells compared with wild‐type EPEC, and expressing espZ in cells abrogated this effect. Using yeast two‐hybrid, proteomics, immunofluorescence and co‐immunoprecipitation, it was demonstrated that EspZ interacts with the host protein CD98, which contributes to protection against EPEC‐mediated cytotoxicity. EspZ enhanced phosphorylation of focal adhesion kinase (FAK) and AKT during infection with EPEC, but CD98 only appeared to facilitate FAK phosphorylation. This study provides evidence that EspZ and CD98 promote host cell survival mechanisms involving FAK during A/E pathogen infection.  相似文献   

17.
Adhesion of Shiga toxin-producing Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to human colonic epithelium is a critical step for infection by this type of bacteria. Here, we demonstrate that adherence of EHEC O157:H7 to cultured human colonic T84 epithelial monolayers can be blocked by heparin and heparan sulfate in a dose-dependent fashion. In doing this, heparin and heparan sulfate also prevent dysfunction of the T84 barrier and disorganization of epithelial tight junction protein ZO-1 caused by EHEC O157:H7. This inhibition by heparin and heparan sulfate seems to result from a block in the binding interactions of bacteria intimin with epithelial β1 integrins. This study provides evidence, for the first time, that heparin and heparan sulfate can serve as novel effective blockers in preventing EHEC O157:H7 infection.  相似文献   

18.
Advances in the understanding of the pathogenesis of enterohaemorrhagic Escherichia coli (EHEC) have greatly benefited from the use of human epithelial cell lines under aerobic conditions. However, in the target site of EHEC infection, the human intestine, conditions are microaerobic. In our study we used polarized human colon carcinoma cells in a vertical diffusion chamber system to investigate the influence of reduced apical oxygen levels on EHEC colonization. While apical microaerobiosis did not affect cell integrity and barrier function, numbers of adherent bacteria were significantly increased under low compared with high apical oxygen concentrations. In addition, expression and translocation of EHEC type III secreted (T3S) effector proteins was considerably enhanced under microaerobic conditions and dependent on the presence of host cells. Increased colonization was mainly mediated via EspA as adherence levels of an isogenic deletion mutant were not influenced by low oxygen levels. Other potential adherence factors (E. coli common pilus and flagella) were only minimally expressed under high and low oxygen levels. Addition of nitrate and trimethylamine N‐oxide as terminal electron acceptors for anaerobic respiration failed to further increase bacterial colonization or T3S under microaerobiosis. This study indicates that EHEC T3S and colonization are enhanced by the microaerobic environment in the gut and therefore might be underestimated in conventional aerobic cell culture systems.  相似文献   

19.
Enterohemorrhagic Escherichia coli (EHEC) employs a type III secretion system (TTSS) to export the translocator and effector proteins required for mucosal colonization. As an important bacterial effector protein in locus of enterocyte effacement four, the EspF protein causes F-actin filament aggregations to form attaching and effacing (A/E) lesions, and induces the destruction of brush-border microvilli and cytoskeletal rearrangements to form pedestals. However, the molecular pathogenesis of A/E lesions due to EHEC O157:H7 infection is unclear. In this study, we constructed an espF-deficient mutant (ΔespF) with a 162-bp deletion in the N-terminal domain by using overlap extension PCR. The results showed that EHEC EspF translocated into intestinal epithelial cells, targeted mitochondria and induced apoptosis. The ΔespF mutant, compared to EHEC prototype Guangzhou strain, had lower cell attachment and effacement abilities, lower caspase-9/3 and lactate dehydrogenase levels, lower bacterial adhesion, weaker mitochondria apoptosis, and a higher mouse survival rate. Our results demonstrate the probable function of the EspF N-terminal domain, which targets mitochondria and binds mitochondria heat shock protein 70 to induce cell apoptosis via A/E lesions. These findings may be invaluable in clarifying the molecular pathogenesis of EspF of EHEC O157:H7.  相似文献   

20.
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form “attaching and effacing” lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号