首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Ceramide kinase (CERK) and its product, ceramide-1-phosphate (Cer-1-P), are implicated in signaling processes, but the action mechanisms are not fully elucidated. When checking for intracellular effects of Cer-1-P by exposing CERK-expressing CHO cells to truncated ceramides, an unexpected decrease in CERK activity and protein level was observed. This decrease appeared dose-dependent and specific for the d-erythro-ceramide configuration and the presence of the double bond. At early time points, CERK clustered near the plasma membrane, followed later by its appearance in the culture medium. In cells expressing CERK lacking the pleckstrin domain or an inactive CERK mutant, this ceramide effect was not observed, indicating that clustering and release of CERK may be mediated by Cer-1-P. Presumably, high local Cer-1-P concentrations will increase the plasma membrane curvature and lead to release of CERK by vesicle shedding. This could be a potential regulatory mechanism in CERK/Cer-1-P signaling so far not investigated.  相似文献   

5.
6.
The human pathogen Salmonella typhimurium can colonize, proliferate and persist in the intestine causing enteritis in mammals and mortality in the nematode Caenorhabditis elegans. Using C. elegans as a model, we determined that the Salmonella pathogenicity islands-1 and -2 (SPI-1 and SPI-2), PhoP and the virulence plasmid are required for the establishment of a persistent infection. We observed that the PhoP regulon, SPI-1, SPI-2 and spvR are induced in C. elegans and isogenic strains lacking these virulence factors exhibited significant defects in the ability to persist in the worm intestine. Salmonella infection also leads to induction of two C. elegans antimicrobial genes, abf-2 and spp-1, which act to limit bacterial proliferation. The SPI-2, phoP and Delta pSLT mutants are more sensitive to the cationic peptide polymyxin B, suggesting that resistance to worm's antimicrobial peptides might be necessary for Salmonella to persist in the C. elegans intestine. Importantly, we showed that the persistence defects of the SPI-2, phoP and Delta pSLT mutants could be rescued in vivo when expression of C. elegans spp-1 was reduced by RNAi. Together, our data suggest that resistance to host antimicrobials in the intestinal lumen is a key mechanism for Salmonella persistence.  相似文献   

7.
The innate immunity of vertebrates and invertebrates to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. Successful pathogens have evolved mechanisms to withstand the antibiotic activity of these molecules. We have isolated a set of genes from Salmonella typhimurium which are required for virulence and resistance to the antimicrobial peptides melittin and protamine. Sequence analysis of a 5.7 kb segment from the wild-type plasmid conferring resistance to protamine contained five open reading frames: sapA, sapB, sapC, sapD and sapF, organized in an operon structure and transcribed as a 5.3 kb mRNA. SapD and SapF exhibited similarity with the 'ATP binding cassette' family of transporters including the bacterial Opp and SpoOK, involved in the uptake of oligopeptides; the yeast STE6, necessary for the export of a peptide pheromone; and the mammalian mdr, which mediates resistance to chemotherapeutic agents in cancer cells. SapA showed identity with other periplasmic solute binding proteins involved in peptide transport. The SapABCDF system constitutes a novel transporter for enteric bacteria and the first one harboring a periplasmic component with a role in virulence.  相似文献   

8.
9.
We investigated cytotoxic activity of antimicrobial peptides of different origin (both naturally occurring and synthetic), structure and known mechanisms of action against human histiocytic lymphoma cell line U937. The strongest cytotoxic activity against U937 cell line was shown by Pexiganan MSI-78, followed by Citropin 1.1, Protegrin 1 and a synthetic lipopeptide, N-α-palmitoyl-L-lysyl-L-lysine amide (Pal-Lys-Lys-NH?). The cytotoxic activity of the peptides was more dependent on the time of incubation than concentration. Only for the lipopeptide, whose mode of action was restricted to disruption of electric potential of the cell membrane, the correlation between cytotoxicity and concentration was almost linear. The high cytotoxicity of Pexiganan MSI-78, Protegrin 1 and the lipopeptide could be basically explained by their membranolytic activity leading to necrosis. However, in the case of Citropin 1.1, the cell membrane integrity was disrupted only slightly and independently of the peptide concentration. Therefore, some other mechanism of action might be responsible for its strong dose-dependent cytotoxic activity, e.g., membranolytic activity leading to apoptosis. Furthermore, TNF-α production due to LPS (lipopolysaccharide) stimulation was suppressed by the presence of Citropin 1.1, Pexiganan MSI-78 or Protegrin 1, but not by Buforin 2 or the lipopeptide. Our experiments have shown that cytotoxic activity is not limited to some specific molecular structure of a peptide, but rather to the length of the peptide chain as it is likely to affect the efficiency of the tumor cell membrane disruption and interaction with LPS.  相似文献   

10.
11.
We have designed novel short peptides expressing both antimicrobial and Shiga-toxin (Stx) neutralization activities by combining nuclear localization signal (NLS) peptides (RIRKKLR, PKKKRKV, and PRRRK) tandemly with globotriaoside (Gb3) mimic peptide (WHWTWL). These fusion peptides exhibited excellent antimicrobial activity against both gram-positive and gram-negative bacteria. A peptide WHWTWLRIRKKLR (Trp-His-Trp-Thr-Trp-Leu-Arg-Ile-Arg-Lys-Lys-Leu-Arg), especially, exhibited about 100 times higher activity than the original NLS peptide. SPR analysis demonstrated that the binding of this peptide to both Stxs was strong: K(d) = 6.6 x 10(-6) to Stx-1 and 6.8 x 10(-6) to Stx-2. The in vitro assay against Stx-1 using HeLa cells showed that this peptide increased the survival rate of HeLa cells against the infection of Stx-1. The peptide has been found to maintain high antimicrobial activity, Stx neutralization activity, and no cytotoxicity at its concentration of 7.8-31.3 microg/mL (4.2-16.7 microM). The present peptide design has a prospect of developing potent multifunctional drugs to destroy proteinaceous toxin-producing bacteria and to simultaneously neutralize the toxins released by bacteriolysis.  相似文献   

12.
New designs of antimicrobial peptides are urgently needed in order to combat the threat posed by the recent increase of resistance to antibiotics. In this paper, we present a new series of antimicrobial peptides, based on the key structural features of the lantibiotic nisin. We have simplified the structure of nisin by conjugating the lipid II-binding motif at the N-terminus of nisin to a series of cationic peptides and peptoids with known antibacterial action and pore-forming properties. Hybrid peptides, where a hydrophilic PEG4 linker was used, showed good antibacterial activity against Micrococcus luteus.  相似文献   

13.
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence and peptides corresponding to chimeras of human and bovine sequences. None of the peptides corresponding to different regions of native human lactoferricin showed any antimicrobial activity. The results underline the importance of the content of tryptophan and arginine residues, and the relative location of these residues for antimicrobial activity. Results obtained for the same assays performed with LPS mutants suggest that lipid A is not the main binding site for lactoferricin which interacts first with the negative charges present in the inner core. Computer modelling of the most active peptides led to a model in which positively charged residues of the cationic peptide interact with negative charges carried by the LPS to disorganise the structure of the outer membrane and facilitate the approach of tryptophan residues to the lipid A in order to promote hydrophobic interactions.  相似文献   

14.
Acrinol, which is used as a disinfectant and an abortifacient in several countries, was tested for mutagenicity by the Ames test system. After incubation with a rat-liver S9 microsomal preparation, acrinol showed potent mutagenicity for Salmonella typhimurium strains TA98 and TA100, although it had no direct mutagenicity for the microorganisms.  相似文献   

15.
A mutant of Salmonella typhimurium with undetectable phosphoribosylpyrophosphate (PRPP) synthetase activity in vitro and abnormally low PRPP pools in vivo was identified by screening temperature-sensitive isolates by an autoradiographic procedure. The lack of PRPP synthetase activity in vitro and temperature-sensitive growth were shown to result from separate, but closely linked mutations mapping at 47 units on the Salmonella chromosome. Mutant cell extracts prepared by a variety of methods did not show any detectable PRPP synthetase activity, but material that was immunochemically cross-reactive with PRPP synthetase was detected by complement fixation analysis. A second mutant, isolated by localized mutagenesis, contained about half the PRPP synthetase and cross-reacting material of the parental strain.  相似文献   

16.
Ginseng has been reported to exhibit antioxidant and antimutagenic activity. The present study was undertaken with a view to confirm whether the antioxidant activity of Ginseng is responsible for its antimutagenic action. The concentrated root extract of Panax ginseng (Ginseng extract I) and its lyophilized powder (Ginseng extract II) obtained from two different manufacturing houses, were tested against mutagenesis using the well-standardized Ames microsomal test system. The extracts exhibited antimutagenic effect against hydrogen peroxide induced mutagenesis in TA100 strain, and against mutagenesis produced by 4-nitroquinoline-N-oxide in both TA98 and TA100 strains of Salmonella typhimurium. Both the extracts failed to show any antimutagenic potential against tert-butyl hydroperoxide (an oxidative mutagen) in TA102 strain, a strain highly sensitive to active oxygen species. The extracts also indicated a weak antioxidant activity in a series of in vitro test systems viz., 1,1-diphenyl picryl hydrazyl (DPPH) assay, hydrogen peroxide scavenging and superoxide anion scavenging. The results indicate that the protective effects shown by ginseng extract(s) against 4-nitroquinoline-n-oxide and hydrogen peroxide induced mutagenesis in TA98 and TA100 could mainly be due to its property to initiate and promote DNA repair rather than free radical scavenging action.  相似文献   

17.
The treatment of macrophages of mouse peritoneal exudate has been found to enhance their bactericidal activity with respect to S. typhimurium. This activation depends on the dose of interferon and the cells/bacteria ratio. The action of interferon is species-specific.  相似文献   

18.
Leishmaniasis encompasses a wide range of infections caused by the human parasitic protozoan species belonging to the Leishmania genus. It appears frequently as an opportunistic disease, especially in virus-infected immunodepressed people. Similarly to other pathogens, parasites became resistant to most of the first-line drugs. Therefore, there is an urgent need to develop antiparasitic agents with new modes of action. Gene-encoded antimicrobial peptides are promising candidates, but so far only a few of them have shown anti-protozoa activities. Here we found that temporins A and B, 13-amino acid antimicrobial peptides secreted from the skin of the European red frog Rana temporaria, display anti-Leishmania activity at micromolar concentrations, with no cytolytic activity against human erythrocytes. To the best of our knowledge, temporins represent the shortest natural peptides having the highest leishmanicidal activity and the lowest number of positively charged amino acids (a single lysine/arginine) and maintain biological function in serum. Their lethal mechanism involves plasma membrane permeation based on the following data. (i) They induce a rapid collapse of the plasma membrane potential. (ii) They induce the influx of the vital dye SYTOX Green. (iii) They reduce intracellular ATP levels. (iv) They severely damage the membrane of the parasite, as shown by transmission electron microscopy. Besides giving us basic important information, the unique properties of temporins, as well as their membranolytic effect, which should make it difficult for the pathogen to develop resistance, suggest them as potential candidates for the future design of antiparasitic drugs with a new mode of action.  相似文献   

19.
Chen L  Li Y  Li J  Xu X  Lai R  Zou Q 《Peptides》2007,28(8):1527-1531
An antimicrobial peptide named odorranain-HP was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLRASSVWGRKYYVDLAGCAKA. By BLAST search, odorranain-HP had similarity to antimicrobial peptide odorranain-W1 but it has a different GLLR N-terminus. The cDNA encoding odorranain-HP was cloned from the cDNA library of the skin of O. grahami. This peptide showed antimicrobial activities against tested microorganisms. Interestingly, odorranain-HP could exert antimicrobial capability against Helicobacter pylori, along with its antimicrobial activities similar to odorranain-W1. This is the first report of naturally occurring peptide with anti-H. pylori activity from amphibian skins.  相似文献   

20.
During bacterial growth, cell wall peptides are released from the murein and reused for the synthesis of new cell wall material. Mutants defective in peptide transport were unable to reutilize cell wall peptides, demonstrating that these peptides are taken up intact into the cytoplasm prior to reincorporation into murein. Furthermore, cell wall peptide recycling was shown to play an important physiological role; peptide transport mutants which were unable to recycle these peptides showed growth defects under appropriate conditions. Using mutants specifically defective in each of the three peptide transport systems, we showed that the uptake of cell wall peptides was mediated solely by the oligopeptide permease (Opp) and that neither the dipeptide permease (Dpp) nor the tripeptide permease (Tpp) played a significant role in this process. Our data indicate that the periplasmic oligopeptide-binding protein has more than one substrate-binding site, each with different though overlapping specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号