首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Background information. Insulin‐stimulated glucose uptake into skeletal muscle is crucial for glucose homoeostasis, and depends on the recruitment of GLUT4 (glucose transporter 4) to the plasma membrane. Mechanisms underlying insulin‐dependent GLUT4 translocation, particularly the role of Rho family GTPases, remain controversial. Results. In the present study, we show that constitutively active Rac1, but not other Rho family GTPases tested, induced GLUT4 translocation in the absence of insulin, suggesting that Rac1 activation is sufficient for GLUT4 translocation in muscle cells. Rac1 activation occurred in dorsal membrane ruffles of insulin‐stimulated cells as revealed by a novel method to visualize activated Rac1 in situ. We further identified FLJ00068 as a GEF (guanine‐nucleotide‐exchange factor) responsible for this Rac1 activation. Indeed, constitutively active FLJ00068 caused Rac1 activation in dorsal membrane ruffles and GLUT4 translocation without insulin stimulation. Down‐regulation of Rac1 or FLJ00068 by RNA interference, on the other hand, abrogated insulin‐induced GLUT4 translocation. Basal, but not insulin‐stimulated, activity of the serine/threonine kinase Akt was required for the induction of GLUT4 translocation by constitutively active Rac1 or FLJ00068. Conclusion. Collectively, Rac1 activation specifically in membrane ruffles by the GEF FLJ00068 is sufficient for insulin induction of glucose uptake into skeletal‐muscle cells.  相似文献   

3.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

4.
Eukaryotic cells can employ autophagy to defend themselves against invading pathogens. Upon infection by Plasmodium berghei sporozoites, the host hepatocyte targets the invader by labelling the parasitophorous vacuole membrane (PVM) with the autophagy marker protein LC3. Until now, it has not been clear whether LC3 recruitment to the PVM is mediated by fusion of autophagosomes or by direct incorporation. To distinguish between these possibilities, we knocked out genes that are essential for autophagosome formation and for direct LC3 incorporation into membranes. The CRISPR/Cas9 system was employed to generate host cell lines deficient for either FIP200, a member of the initiation complex for autophagosome formation, or ATG5, responsible for LC3 lipidation and incorporation of LC3 into membranes. Infection of these knockout cell lines with Pberghei sporozoites revealed that LC3 recruitment to the PVM indeed depends on functional ATG5 and the elongation machinery, but not on FIP200 and the initiation complex, suggesting a direct incorporation of LC3 into the PVM. Importantly, in Pberghei‐infected ATG5?/? host cells, lysosomes still accumulated at the PVM, indicating that the recruitment of lysosomes follows an LC3‐independent pathway.  相似文献   

5.
Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.  相似文献   

6.
The success of Mycobacterium tuberculosis (Mtb) as a pathogen stems from its ability to manipulate the host macrophage towards increased lipid biogenesis and lipolysis inhibition. Inhibition of lipolysis requires augmented uptake of glucose into the host cell causing an upregulation of the glucose transporters GLUT1 and GLUT3 on the cell surface. Mechanism behind this upregulation of the GLUT proteins during Mtb infection is hitherto unknown and demands intensive investigation in order to understand the pathways linked with governing them. Our endeavor to investigate some of the key proteins that have been found to be affected during Mtb infection led us to investigate host molecular pathways such as Akt and PPAR-γ that remain closely associated with the survival of the bacilli by modulating the localization of glucose transporters GLUT1 and GLUT3.  相似文献   

7.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofa- cial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitiv- ity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin re- sponsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobi- lization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differ- ential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

8.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

9.
Type III secretion enables bacteria to intoxicate eukaryotic cells with anti‐host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore. Here, four in cis yopD mutations were constructed to disrupt a predicted α‐helix motif at the C‐terminus. Mutants YopDI262P and YopDK267P poorly localized Yop effectors into target eukaryotic cells and failed to resist uptake and killing by immune cells. These defects were due to deficiencies in host‐membrane insertion of the YopD–YopB translocon. Mutants YopDA263P and YopDA270P had no measurable in vitro translocation defect, even though they formed smaller translocon pores in erythrocyte membranes. Despite this, all four mutants were attenuated in a mouse infection model. Hence, YopD variants have been generated that can spawn translocons capable of targeting effectors in vitro, yet were bereft of any lethal effect in vivo. Therefore, Yop translocators may possess other in vivo functions that extend beyond being a portal for effector delivery into host cells.  相似文献   

10.
Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2) to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a “lean” epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.  相似文献   

11.
GLUT12 was cloned from the mammary cancer cell line MCF-7, but its physiological role still needs to be elucidated. To gain more knowledge of GLUT12 function in the intestine, we investigated GLUT12 subcellular localization in the small intestine and its regulation by sugars, hormones, and intracellular mediators in Caco-2 cells and mice. Immunohistochemical methods were used to determine GLUT12 subcellular localization in human and murine small intestine. Brush border membrane vesicles were isolated for western blot analyses. Functional studies were performed in Caco-2 cells by measuring α-methyl-d -glucose (αMG) uptake in the absence of sodium. GLUT12 is located in the apical cytoplasm, below the brush border membrane, and in the perinuclear region of murine and human enterocytes. In Caco-2 cells, GLUT12 translocation to the apical membrane and α-methyl- d -glucose uptake by the transporter are stimulated by protons, glucose, insulin, tumor necrosis factor-α (TNF-α), protein kinase C, and AMP-activated protein kinase. In contrast, hypoxia decreases GLUT12 expression in the apical membrane. Upregulation of TNF-α and hypoxia-inducible factor-1α ( HIF-1α) genes is found in the jejunal mucosa of diet-induced obese mice. In these animals, GLUT12 expression in the brush border membrane is slightly decreased compared with lean animals. Moreover, an intraperitoneal injection of insulin does not induce GLUT12 translocation to the membrane, as it occurs in lean animals. GLUT12 rapid translocation to the enterocytes’ apical membrane in response to glucose and insulin could be related to GLUT12 participation in sugar absorption during postprandial periods. In obesity, in which insulin sensitivity is reduced, the contribution of GLUT12 to sugar absorption is affected.  相似文献   

12.
While α1-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α1-AR stimulation protected against increased lactate dehydrogenase release or Annexin V+ apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α1-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α1-AR stimulation increased 3H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α1-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α1-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α1-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α1A-AR but not α1B-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α1A-AR but not α1B-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α1-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α1A-AR subtype.  相似文献   

13.

Aims

Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1.

Main methods

We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators.

Key findings

Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 μM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells.

Significance

The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration.  相似文献   

14.
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.  相似文献   

15.
16.
Insulin stimulates trafficking of GLUT4 to the cell surface for glucose uptake into target cells, and phosphorylation of Ser703 of the Na+/H+ exchanger NHE1, which activates proton efflux. The latter has been proposed to facilitate optimal glucose uptake into cardiomyocytes. We found that the insulin-stimulated phosphorylation of Ser703 of NHE1 is mediated by p90RSK but not directly coupled to glucose uptake in 3T3-L1 adipocytes in the short-term. Inhibiting Erk1/2 activation prevented NHE1 phosphorylation but not glucose uptake in 3T3-L1 adipocytes. In contrast, both NHE1 phosphorylation and insulin-stimulated uptake of glucose into 3T3-L1 adipocytes were blocked by inhibitors of the N-terminal kinase domain of p90RSK, namely BI-D1870 and SL0101, but not the FMK inhibitor of the C-terminal kinase domain of p90RSK, though in our hands FMK did not inhibit p90RSK in 3T3-L1 adipocytes. Further experiments were consistent with phosphorylation of AS160 by PKB/Akt mediating insulin-stimulated trafficking of GLUT4 to the plasma membrane. BI-D1870 and SL0101 however, inhibited glucose uptake without blocking GLUT4 translocation. While BI-D1870 partially inhibited insulin-stimulated PKB activation in these cells, this only partially inhibited AS160 phosphorylation and did not block GLUT4 trafficking, suggesting that p90RSK might regulate glucose transport after GLUT4 translocation. Moreover, BI-D1870 also prevented PMA-induced glucose transport in 3T3-L1 adipocytes further suggesting a role for p90RSK in regulating uptake of glucose into the cells. Kinetic experiments are consistent with SL0101 being a direct competitor of 2-deoxyglucose entry into cells, and this compound might also inhibit uptake of glucose into cells via inhibiting p90RSK, as revealed by comparison with the inactive form of the inhibitor. Taken together, we propose that BI-D1870 and SL0101 might exert their inhibitory effects on glucose uptake in 3T3-L1 adipocytes at least partially through a p90RSK dependent step after GLUT4 becomes associated with the plasma membrane.  相似文献   

17.
18.
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-14C]palmitate) or [3H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.  相似文献   

19.
20.
GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1‐4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号