首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background information. CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, ΔF508 (deletion of Phe‐508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na+/H+‐exchanger regulatory factor 1) in CF airway cells induced both a redistribution of ΔF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)‐dependent activation of ΔF508CFTR‐dependent chloride secretion. In view of the potential importance of the targeted up‐regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o, with subsequent rescue of apical ΔF508CFTR chloride transport activity. Results. We found that CFBE41o cells do express ERs (oestrogen receptors) in the nuclear fraction and that β‐oestradiol treatment was able to significantly rescue ΔF508CFTR‐dependent chloride secretion in CFBE41o cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the ΔF508CFTR translocated to the apical membrane can function as a cAMP‐responsive channel, with a significant increase in chloride secretion noted at 1 nM β‐oestradiol and a maximal effect observed at 10 nM. Importantly, knock‐down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the β‐oestradiol‐dependent increase in ΔF508CFTR protein expression levels and completely prevented the β‐oestradiol‐dependent rescue of ΔF508CFTR transport activity. Conclusions. These results demonstrate that β‐oestradiol‐dependent up‐regulation of NHERF1 significantly increases ΔF508CFTR functional expression in CFBE41o cells.  相似文献   

2.
Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N‐acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S‐nitrosoglutathione) previously has been shown to be able to promote Cl? efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl? efflux from CF and non‐CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37°C. The effect of NAC on Cl? transport was measured by Cl? efflux measurements and by X‐ray microanalysis. Cl? efflux from CFBE cells was stimulated by NAC in a dose‐dependent manner, with 10 mM NAC causing a significant increase in Cl? efflux with nearly 80% in CFBE cells. The intracellular Cl? concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl? efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients.  相似文献   

3.
12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o cells compared to normal bronchial epithelial cells 16HBE14o. Surprisingly, messenger RNA level of IFRD1 in CFBE41o cells was found elevated. Treating CFBE41o cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.  相似文献   

4.
Aims: The aim of this study was to investigate the role of membrane‐bound lytic murein transglycosylase A (MltA) in a bacterial fish pathogen Edwardsiella tarda. Methods and Results: An mltA in‐frame deletion mutant (ΔmltA) and an mltA overexpression strain (mltA+) of Edw. tarda were constructed through double‐crossover allelic exchange and by transformation of a low‐copy plasmid carrying the intact mltA into the ΔmltA mutant, respectively. Either inactivation or overexpression of MltA in Edw. tarda resulted in elevated sensitivity to β‐lactam antibiotics and lower viability in oligotrophic or high osmotic environment than wild‐type strain. Autolysis induced by EDTA was reduced in ΔmltA strain, while mltA+ strain was virtually flimsy, indicating that MltA is responsible for the lysis effect. Moreover, mltA+ strain exhibited significant increases in lipopolysaccharide (LPS) biosynthesis and virulence to zebra fish compared with wild‐type strain. Conclusions: The results indicated that MltA plays essential roles in β‐lactam antibiotics and environmental stresses resistance, autolysis, LPS biosynthesis and pathogenicity of Edw. tarda. This is the first report that MltA has a virulence‐related function in Edw. tarda. Significance and Impact of the Study: This study provided useful information for further studies on pathogenesis of Edw. tarda.  相似文献   

5.
Objective: Obesity is associated with lower rates of skeletal muscle fatty acid oxidation (FAO), which is linked to insulin resistance. FAO is reduced further in obese African‐American (AAW) vs. white women (CW) and may also be lower in lean AAW vs. CW. In lean CW, endurance exercise training (EET) elevates the oxidative capacity of skeletal muscle. Therefore, we determined whether EET would elevate skeletal muscle FAO similarly in AAW and CW with a lower lipid oxidative capacity. Research Methods and Procedures: In vitro rates of FAO were assessed in rectus abdominus muscle strips using [1‐14C] palmitate (Pal) from lean AAW [BMI = 24.2 ± 0.9 (standard error) kg/m2] and CW (23.6 ± 0.8 kg/m2) undergoing voluntary abdominal surgery. Lean AAW (22 ± 0.9 kg/m2) and CW (24 ± 0.8 kg/m2) and obese AAW (36 ± 1.2 kg/m2) and CW (40 ± 1.3 kg/m2) underwent 10 consecutive days of EET on a cycle ergometer (60 min/d, 75% peak oxygen uptake). FAO was measured in vastus lateralis homogenates as captured 14CO2 using [1‐14C] Pal, palmitoyl‐CoA (Pal‐CoA), and palmityl‐carnitine (Pal‐Car). Results: Muscle strip experiments showed suppressed rates of FAO (p = 0.03) in lean AAW vs. CW. EET increased the rates of skeletal muscle Pal oxidation (p = 0.05) in both lean AAW and CW. In obese subjects, Pre‐EET Pal (but not Pal‐CoA or Pal‐Car) oxidation was lower (p = 0.05) in AAW vs. CW. EET increased Pal oxidation 100% in obese AAW (p < 0.05) and 59% (p < 0.05) in obese CW. Similar increases (p < 0.05) in post‐EET FAO were observed for Pal‐CoA and Pal‐Car in both groups. Discussion: Both lean and obese AAW possess a lower capacity for skeletal muscle FAO, but EET increases FAO similarly in both AAW and CW. These data suggest the use of EET for treatment against obesity and diabetes for both AAW and CW.  相似文献   

6.
7.
Al Arsh Basheer  Imran Ali 《Chirality》2018,30(9):1088-1095
The environmental stereoselective uptake and degradation of (±)‐o,p‐DDD pesticide stereomers in water‐sediment system are described. The results were analyzed by artificial neural network model. The optimized experimental parameters were concentration of o,p‐DDD streamers (7.0 μg L?1), experimental time (60 min), pH (6), dose (5.0 g L?1), and temperature (25°C). The maximum uptake and degradation were 87% and 85% and 33.0% and 30.5% for (?)‐ and (+)‐stereomers of o,p‐DDD in 15‐day time. Both uptake and degraded phenomenon showed first‐order rate reaction. Thermodynamic variables indicated exothermic nature of uptake and degradation processes. The uptake and degradation were slightly higher for (?)‐stereomer than (+)‐stereomer of o,p‐DDD. It was assumed that both uptake and degradation processes are accountable for the removal of the streomers of o,p‐DDD from earth's ecosystem, but the uptake is responsible for major contribution. The magnitudes of relative errors obtained by artificial neural network model were in the range of ±0.2 to 3.5, indicating good applicability of the experimental data. The results are very useful to control the environmental contamination due to the chiral o,p‐DDD pesticide as its two enantiomers have different ecological toxicities.  相似文献   

8.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

9.
Background: In contrast to wild type, interleukin‐10‐deficient (IL‐10?/–) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL‐10?/– mice leading to the reduction of Helicobacter infection. Materials and Methods: We characterized the immune responses of Helicobacter felis‐infected IL‐10?/– mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4+ T cells in the Helicobacter clearance by injecting H. felis‐infected IL‐10?/– mice with anti‐CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL‐10 double‐deficient mice. Results: Reduction of Helicobacter infection in IL‐10?/– mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL‐10?/– in comparison to wild‐type mice, p < .008) and cellular (urease‐stimulated splenic CD4+ T cells isolated from infected IL‐10?/– mice produce 150‐fold more interferon‐γ in comparison to wild‐type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4+ cells from Helicobacter‐infected IL‐10?/– mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4+ depleted IL‐10?/– in comparison to nondepleted IL‐10?/– mice, p < .02). Mast cell IL‐10?/– double‐deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL‐10?/– mice. Conclusion: Taken together, these results suggest that CD4+ cells are required for Helicobacter clearance in IL‐10?/– mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.  相似文献   

10.
Quorum sensing (QS) exists widely among bacteria, enabling a transition to multicellular behaviour after bacterial populations reach a particular density. The coordination of multicellularity enables biotechnological application, dissolution of biofilms, coordination of virulence, and so forth. Here, a method to elicit and subsequently disperse multicellular behaviour among QS‐negative cells is developed using magnetic nanoparticle assembly. We fabricated magnetic nanoparticles (MNPs, ~5 nm) that electrostatically collect wild‐type (WT) Escherichia coli BL21 cells and brings them into proximity of bioengineered E. coli [CT104 (W3110 lsrFG? luxS? pCT6 + pET‐DsRed)] reporter cells that exhibit a QS response after receiving autoinducer‐2 (AI‐2). By shortening the distance between WT and reporter cells (e.g., increasing local available AI‐2 concentrations), the QS response signalling was amplified four‐fold compared to that in native conditions without assembly. This study suggests potential applications in facilitating intercellular communication and modulating multicellular behaviours based on user‐specified designs.  相似文献   

11.
The type VI protein secretion system (T6SS) is essential for the virulence of several Gram‐negative bacteria. In this study, we identified a T6SS gene cluster in Acidovorax citrulli, a plant‐pathogenic bacterium that causes bacterial fruit blotch (BFB) of cucurbits. One T6SS cluster, of approximately 25 kb in length and comprising 17 genes, was found in the A. citrulli AAC00‐1 genome. Seventeen A. citrulli mutants were generated, each with a deletion of a single T6SS core gene. There were significant differences in BFB seed‐to‐seedling transmission between wild‐type A. citrulli strain, xjl12, and ΔvasD, ΔimpK, ΔimpJ and ΔimpF mutants (71.71%, 9.83%, 8.41%, 7.15% and 5.99% BFB disease index, respectively). In addition, we observed that these four mutants were reduced in melon seed colonization and biofilm formation; however, they were not affected in virulence when infiltrated into melon seedling tissues. There were no significant differences in BFB seed‐to‐seedling transmission, melon tissue colonization and biofilm formation between xjl12 and the other 13 T6SS mutants. Overall, our results indicate that T6SS plays a role in seed‐to‐seedling transmission of BFB on melon.  相似文献   

12.

Aims

The aim of this study was to investigate the role of invasin in a bacterial fish pathogen Edwardsiella tarda.

Methods and Results

In this study, an in‐frame deletion mutant of invasin (Δinv) in Edw. tarda H1 was constructed through double crossover allelic exchange to explore the function of invasin in virulence to fish. Meanwhile, an invasin overexpression strain (inv+) was obtained by electrotransformation of a low‐copy plasmid pACYC184 carrying the intact invasin into the Δinv mutant. Several virulence‐associated characters of the mutants and wild‐type strain were tested. Compared with the wild‐type H1, haemolytic activity and biofilm formation were decreased in Δinv, while increased significantly in inv+. In addition, the invasin overexpressing strain inv+ exhibited increased internalization into Epithelioma Papulosum Cyprini (EPC) cells. Moreover, in zebrafish model, Δinv showed decreased virulence compared with H1, while inv+ restored the virulence of wild type completely.

Conclusions

The results demonstrated that invasin of Edw. tarda plays essential roles in haemolytic activity, biofilm formation, adherence, internalization and pathogenicity of this bacterium.

Significance and Impact of the Study

This study revealed the role of invasin in Edw. tarda infection and provided useful information for further unveiling the pathogenesis of Edw. tarda.  相似文献   

13.
Aims: To understand the intracellular reducing power metabolism, growth and intracellular NAD(P)H concentrations of a phosphoglucose isomerase (pgi)‐disrupted Escherichia coli (KS002) were investigated with the expressions of redox enzymes. Methods and Results: The isogenic pgi‐mutation enabled E. coli to harbour two times both the intracellular NADPH and NADH at half the growth rate. The wild‐type expressing NAD‐dependent malic enzyme (maeA) was incapable of sufficient growth (<0·02 h?1), and the growth retardations were distinctively recovered when NADP‐dependent glyceraldehyde‐3‐phosphate dehydrogenase (gapB) from Bacillus subtilis was coexpressed. The KS002 expressing maeA harboured the highest intracellular reducing powers (NADPH of 3·9 and NADH of 5·2 μmol g DCW?1) by three times each of those in wild type. The expression of NADP‐dependent malic enzyme (maeB) enabled wild‐type and KS002 strains to grow without significant alteration. Conclusions: The alterations of reducing powers and the growth were analysed in the genetic engineered E. coli strains. The potential application of the cells with the high intracellular NAD(P)H level is discussed based on the results. Significance and Impact of the Study: Metabolic engineering strategy for higher reducing power regeneration is provided.  相似文献   

14.
Aims: To investigate the involvement of osmoprotectant transporters in organic solvent tolerance in Escherichia coli and to construct an E. coli strain with high organic solvent tolerance. Methods and Results: The organic solvent tolerance of ΔbetT, ΔproV, ΔproP or ΔputP single‐gene knockout mutants of E. coli K‐12 strain was examined. Among these mutants, the organic solvent tolerance of the ΔproV mutant remarkably increased compared with that of the parent strain. It has been known that a marR mutation confers tolerance on E. coli to organic solvents. A ΔproV and ΔmarR double‐gene mutant was more tolerant to organic solvents than the ΔproV or ΔmarR single‐gene mutant. The n‐hexane amount accumulated in E. coli cells was examined after incubation in an n‐hexane‐aqueous medium two‐phase system. The intracellular n‐hexane level in the ΔproV and ΔmarR double‐gene mutant was kept lower than those of the parent strain, ΔproV mutant and ΔmarR mutant. Conclusions: The organic solvent tolerance level in E. coli highly increased by dual disruption of proV and marR. Significance and Impact of the Study: This study suggests a new strategy for increasing the organic solvent tolerance level in E. coli to improve the usability of the whole‐cell biocatalysts in two‐phase systems employing organic solvents.  相似文献   

15.
Summary The active sites of the enzyme phenylalanine ammonia-lyase (Pal) from Rhodosporidium toruloides contains a dehydroalanine residue that is believed to be essential for catalytic activity. Furthermore, the dehydroalanine is believed to be added post-translationally as part of a prosthetic group covalently attached to the enzyme. Perhaps for this reason no attempts to produce Pal in foreign host cells have been reported. We have inserted the entire uninterupted pal gene from R. toruloides into the Escherichia coli expression vector pKK 223-3. E. coli cells containing this vector synthesize a protein of the expected size, and extracts prepared from these cells contain a Pal-like activity. The potential implications of this finding are discussed.Offprint requests to: H. Ørum  相似文献   

16.
Chiral 1‐(o‐chlorophenyl)‐ethanols are key intermediates in the synthesis of chemotherapeutic substances. Enantioselective reduction of o‐chloroacetophenone is a preferred method of production but well investigated chemo‐ and biocatalysts for this transformation are currently lacking. Based on the discovery that Candida tenuis xylose reductase converts o‐chloroacetophenone with useful specificity (kcat/Km = 340 M−1 s−1) and perfect S‐stereoselectivity, we developed whole‐cell catalysts from Escherichia coli and Saccharomyces cerevisiae co‐expressing recombinant reductase and a suitable system for recycling of NADH. E. coli surpassed S. cerevisiae sixfold concerning catalytic productivity (3 mmol/g dry cells/h) and total turnover number (1.5 mmol substrate/g dry cells). o‐Chloroacetophenone was unexpectedly “toxic,” and catalyst half‐life times of only 20 min (E. coli) and 30 min (S. cerevisiae) in the presence of 100 mM substrate restricted the time of batch processing to maximally ∼5 h. Systematic reaction optimization was used to enhance the product yield (≤60%) of E. coli catalyzed conversion of 100 mM o‐chloroacetophenone which was clearly limited by catalyst instability. Supplementation of external NAD+ (0.5 mM) to cells permeabilized with polymyxin B sulfate (0.14 mM) resulted in complete conversion providing 98 mM S‐1‐(o‐chlorophenyl)‐ethanol. The strategies considered for optimization of reduction rate should be generally useful, however, especially under process conditions that promote fast loss of catalyst activity. Biotechnol. Bioeng. 2011; 108:797–803. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2) and temperature on high‐latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ13C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree‐ring record, which extends from 1912 through 1961 (50 years), targets early twentieth‐century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ13C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high‐latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth‐Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ13C in response to twentieth century pCO2 rise, a significant negative relationship (r = ?0.53, P < 0.0001) between the average, annual Δ13C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water‐use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2. We conclude that annual tree‐ring records from northern high‐latitude forests record the effects of climate warming and pCO2 rise across the twentieth century.  相似文献   

18.
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O‐linked protein glycosylation system in B. cenocepacia K56‐2. The PglLBc O‐oligosaccharyltransferase (O‐OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N‐glycosylation system to a Neisseria meningitides‐derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56‐2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc‐HexNAc‐Hex, which is unrelated to the O‐antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post‐translational modification in Bcc with implications for pathogenesis.  相似文献   

19.
Aims: To characterize the diversity of extended‐spectrum beta‐lactamase (ESBL)‐producing Escherichia coli isolates recovered within the faecal microbiota of Iberian lynx. The identification of other associated resistance genes and the analysis of clonal relationship were also focused in this study. Methods and Results: From 2008 to 2010, 128 faecal samples of Iberian lynx (wild and captive animals) were collected. Eleven tested samples contained cefotaxime‐resistant E. coli isolates (all belonging to captive animals) and 10 ESBL‐producing isolates were showed. CTX‐M‐14 and SHV‐12 ESBL‐types were detected and seven different patterns were identified by pulsed‐field gel electrophoresis analysis. Conclusions: The occurrence of unrelated multiresistant E. coli in faecal flora of captive specimens of Iberian lynx, including the presence of ESBLs, resistant genes in integrons and virulence determinants was showed in this study. Significance and Impact of the Study: The results obtained in this study highlight the environmental problem as future reintroductions of Iberian lynx could lead to a spread of resistant bacteria. Additionally, ESBL‐producing bacteria can represent a health problem for this endangered species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号