首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jacobs JM  Yang X  Luft BJ  Dunn JJ  Camp DG  Smith RD 《Proteomics》2005,5(5):1446-1453
The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing approximately 38% coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.  相似文献   

3.
Abstract Borrelia burgdorferi sensu stricto strain 297 and B. garinii strains HP1 and 12–92 were serially subcultured for 36–50 passages in vitro for 1 year. All low-passage strains showed abundant expression of outer surface protein C (OspC) in the 22–23-kDa range, but the high-passage strains lost or showed reduced expression of OspC in comparison with the low-passage strains. The low-passage strains efficiently infected outbred ddY mice when inoculated into the hind footpad or peritoneal cavity. In contrast, the incidence of infection with the high-passage strains was low. Isolates from the bladders of mice inoculated with the high-passage strains expressed large amounts of OspC in comparison with those originally inoculated. These results indicate that OspC expression is related to the infectivity of Lyme disease borreliae.  相似文献   

4.
Because of an association of human neuroborreliosis with the development of an antibody response against an antigen in neural tissue that cross-reacts with an epitope on the flagellin protein of Borrelia burgdorferi, C3H transgenic mice were created that expressed the flagellin epitope (amino acids 213–224) as a fusion protein with myelin basic protein. The transgenic mice expressed the flagellin epitope selectively in myelinated regions of the nervous system. Both transgenic and non-transgenic mice developed an antibody response to the flagellin epitope during B. burgdorferi infection and both developed arthritis and carditis. However, no lesions were found in the central nervous system of either type of mouse for up to 8 weeks after infection. The data indicate that expression of the flagellin 213–24 epitope in mice does not result in neurologic disease, suggesting that B. burgdorferi flagellin antibodies may not be directly implicated in neuroborreliosis.  相似文献   

5.
Abstract A murine monoclonal antibody, designated MA-2G9, directed against outer surface protein A (OspA) of the Lyme disease spirochete, Borrelia burgdorferi , has been produced. Antibody MA-2G9, IgG1 subclass, was purified by affinity chromatography on protein G Sepharose column and used for purification of OspA antigen from Borrelia burgdorferi cell lysate. Epitope specificity was studied by Western immunoblotting, using several strains of B. burgdorferi and non-Lyme disease bacteria such as Treponema pallidum and B. hermsii . The MA-2G9 monoclonal antibody reacted specifically with recombinant OspA aas well as with native OspA in sonicated B. burgdorferi strains. No reaction was observed with T. pallidum, Escherichia coli, Staphylococcus aureus and B. hermsii lysates. The MA-2G9 antibody also recognized the denatured form of OspA indicating that it is directed against sequential epitope and not conformational epitope.  相似文献   

6.
Whether physicians should prophylactically treat tick bites in areas endemic for Lyme disease has been debated. The high rates of tick infection (10–50%) found in Lyme disease-endemic areas suggest that tick bites should be treated; conversely, the low rates of Lyme disease (1–4%) found in recent clinical trials of untreated tick-bite victims suggest caution in treatment. Medical advice given from Lyme-disease World Wide Web sites is equally contradictory, ranging from suggesting that all tick bites should be treated to suggesting that no tick bites be treated. To clarify this issue, we estimate the transmission probability of the causative agent of Lyme disease, Borrelia burgdorferi, for different durations of tick attachment. The data used to estimate this transmission probability is obtained from previously published animal studies. The accuracy of these estimates is assessed by comparing model predictions of the number of Lyme disease cases to that actually observed in clinical studies of Lyme disease. Our results suggest that tick bites should be treated only when it is known that the duration of tick attachment is longer than 48 hours.  相似文献   

7.
Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, Ixodes scapularis, spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors—proximity to a previously invaded county, forest cover and adjacency to a river—collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect I. scapularis already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where I. scapularis will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread.  相似文献   

8.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

9.
To better understand vector‐borne disease dynamics, knowledge of the ecological interactions between animal hosts, vectors, and pathogens is needed. The effects of hosts on disease hazard depends on their role in driving vector abundance and their ability to transmit pathogens. Theoretically, a host that cannot transmit a pathogen could dilute pathogen prevalence but increase disease hazard if it increases vector population size. In the case of Lyme disease, caused by Borrelia burgdorferi s.l. and vectored by Ixodid ticks, deer may have dual opposing effects on vectors and pathogen: deer drive tick population densities but do not transmit B. burgdorferi s.l. and could thus decrease or increase disease hazard. We aimed to test for the role of deer in shaping Lyme disease hazard by using a wide range of deer densities while taking transmission host abundance into account. We predicted that deer increase nymphal tick abundance while reducing pathogen prevalence. The resulting impact of deer on disease hazard will depend on the relative strengths of these opposing effects. We conducted a cross‐sectional survey across 24 woodlands in Scotland between 2017 and 2019, estimating host (deer, rodents) abundance, questing Ixodes ricinus nymph density, and B. burgdorferi s.l. prevalence at each site. As predicted, deer density was positively associated with nymph density and negatively with nymphal infection prevalence. Overall, these two opposite effects canceled each other out: Lyme disease hazard did not vary with increasing deer density. This demonstrates that, across a wide range of deer and rodent densities, the role of deer in amplifying tick densities cancels their effect of reducing pathogen prevalence. We demonstrate how noncompetent host density has little effect on disease hazard even though they reduce pathogen prevalence, because of their role in increasing vector populations. These results have implications for informing disease mitigation strategies, especially through host management.  相似文献   

10.
Growth kinetic analyses of Borrelia burgdorferi indicated that this bacterium can utilize a limited number of carbon sources for energy: the monosaccharides glucose, mannose, and N-acetylglucosamine, the disaccharides maltose and chitobiose, and glycerol. All of these carbohydrates are likely to be available to B. burgdorferi during infection of either vertebrate and arthropod hosts, enabling development of a model describing energy sources potentially used by the Lyme borreliosis spirochete during its natural infectious cycle.  相似文献   

11.
Abstract. Many isolates of Borrelia burgdorferi have been obtained from ticks and vertebrate tissues collected in North America and continental Europe but only one established culture of United Kingdom Borrelia burgdorferi has been recorded. In this paper we report the isolation of B.burgdorferi from one of 108 tick pools representing 733 ticks and eighty-four tissue samples from twenty-six rodents collected in the U.K., and the subsequent failure to establish the isolate (from ticks collected in Fordingbridge) in culture. In contrast, using identical techniques and culture medium, B.burgdorferi was isolated from one of seven tick pools collected in Switzerland, and from a single pool of ticks collected in Slovakia, and both isolates were successfully passaged. Analysis of questing I.ricinus collected from Fordingbridge by direct immunofluorescence showed 6/32 (19%) of adults and 8/108 (7%) of nymphs were positive for B. burgdorferi , although only one nymph contained ≥ 1000 spirochaetes. To examine further the problem of isolating U.K. B.burgdorferi , twelve Ixodes ricinus tick samples from Fordingbridge, a recognized focus of Lyme disease, were subjected to isolation and culturing techniques, and the procedures monitored by use of the polymerase chain reaction (PCR). Whereas 11/12 samples were PCR positive after 2 weeks in culture, only one was PCR positive after 4 weeks. Motile spirochaetes were not visible by dark-field microscopy in any of the cultures. The results indicate that the standard BSK II medium routinely used to isolate and culture B. burgdorferi does not readily support the replication of the Borrelia species endemic to the U.K.  相似文献   

12.
IMP-1 metallo-beta-lactamase is a transferable carbapenem-hydrolyzing enzyme found in some clinical isolates of Pseudomonas aeruginosa, Serratia marcescens and Klebsiella pneumoniae. Bacteria that express IMP-1 show significantly reduced sensitivity to carbapenems and other beta-lactam antibiotics. A series of thioester derivatives has been shown to competitively inhibit purified IMP-1. As substrates for IMP-1, the thioesters yielded thiol hydrolysis products which themselves were reversible competitive inhibitors. The thioesters also increased sensitivity to the carbapenem L-742,728 in an IMP-1-producing laboratory stain of Escherichia coli, but will need further modification to improve their activity in less permeable organisms such as Pseudomonas and Serratia. Nonetheless, the thioester IMP-1 inhibitors offer an encouraging start to overcoming metallo-beta-lactamase-mediated resistance in bacteria.  相似文献   

13.
A 2‐year study was conducted in a mountainous area of northeast Italy to evaluate the occurrence and distribution of ticks, as well as to assess the prevalence of the spirochaete Borrelia burgdorferi sensu lato. All ticks collected were Ixodes ricinus L. (Parasitiformes: Ixodidae). In general, most nymphs and adult ticks were collected from April to July. Tick density was highly variable among sites; however, two areas with different infestation levels were recognized. Prevalences of B. burgdorferi s.l. in nymphal stages were rather variable between sites; overall the prevalence of infected nymphs in the whole area was slightly higher than 20%. The prevalence of B. burgdorferi s.l. in nymphs does not seem to be correlated with nymph density. The correlation between the incidence of Lyme borreliosis (reported human cases/1000 inhabitants/year) and Borrelia prevalence in nymphs was not significant, although a significant correlation was found between borreliosis incidence and nymph density.  相似文献   

14.
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.  相似文献   

15.
One of the Borrelia burgdorferi virulence determinants, annotated as Lmp1, is a surface‐exposed, conserved, and potential multi‐domain protein involved in various functions in spirochete infectivity. Lmp1 contributes to host–pathogen interactions and evasion of host adaptive immunity by spirochetes. Here, we show that in diverse B. burgdorferi species, Lmp1 exists as distinct, region‐specific, and lower molecular mass polypeptides encompassing 1 or more domains, including independent N‐terminal and middle regions and a combined middle and C‐terminal region. These polypeptides originate from complex posttranslational maturation events, partly supported by a periplasmic serine protease termed as BbHtrA. Although spirochete persistence in mice is independently supported by domain‐specific Lmp1 polypeptides, transmission of B. burgdorferi from ticks to mammals requires essential contributions from both N‐terminal and middle regions. Interference with the functions of Lmp1 domains or their complex posttranslational maturation events may aid in development of novel therapeutic strategies to combat infection and transmission of pathogens.  相似文献   

16.
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.  相似文献   

17.
Two different genetic loci, flaB and ospC, were employed to assign genospecies and OspC phylogenetic type to 18 strains isolated from ticks collected in Pisárky, a suburban park in the city of Brno, Czech Republic. The RFLP analysis revealed three different genospecies (B. afzelii, B. garinii, and B. valaisiana). Three samples from the collection contained more than one genospecies. In the other 15 strains, nucleotide sequences of flaB and ospC were determined. The following phylogenetic analysis assigned 12 isolates to genospecies B. garinii and three to B. afzelii. These isolates were further subdivided into seven distinct ospC groups. The most related OspC types were G2, G4, and G5 (B. garinii) and A3 and A8 (B. afzelii).  相似文献   

18.
Abstract The P39 antigen is a specific, highly conserved, and immunogenic protein of Lyne disease spirochetes, Borrelia burgdorferi sensu lato. The nucleotide sequence of the gene encoding this protein was determined and found to be the first of two tandemly arranged open reading frames located on the spirochete's chromosome. These two open reading frames were designated bmpA for the gene encoding P39 and bmpB for the gene encoding the putative protein ORF2 encoded by the second open reading frame. The nucleic acid sequence identity for the two open reading frames was 62% while their deduced amino acid sequences were 52% identical. Comparison to sequence data bases demonstrated that the deduced amino acid sequences of both P39 and ORF2 were homologous to TmpC, a putative outer or cytoplasmic membrane lipoprotein of the syphilis spirochete, Treponema pallidum .  相似文献   

19.
Aim Ixodes scapularis is the most important vector of human tick‐borne pathogens in the United States, which include the agents of Lyme disease, human babesiosis and human anaplasmosis, among others. The density of host‐seeking I. scapularis nymphs is an important component of human risk for acquiring Borrelia burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and field sampling data to generate a predictive map of the density of host‐seeking I. scapularis nymphs that can be used by the public, physicians and public health agencies to assist with the diagnosis and reporting of disease, and to better target disease prevention and control efforts. Location Eastern United States of America. Methods We sampled host‐seeking I. scapularis nymphs in 304 locations uniformly distributed east of the 100th meridian between 2004 and 2006. Between May and September, 1000 m2 were drag sampled three to six times per site. We developed a zero‐inflated negative binomial model to predict the density of host‐seeking I. scapularis nymphs based on altitude, interpolated weather station and remotely sensed data. Results Variables that had the strongest relationship with nymphal density were altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest fragmentation and soil texture were not predictive. The best‐fit model identified two main foci – the north‐east and upper Midwest – and predicted the presence and absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82% specificity. Areas of concordance and discordance with previous studies were discussed. Areas with high predicted but low observed densities of host‐seeking nymphs were identified as potential expansion fronts. Main conclusions This model is unique in its extensive and unbiased field sampling effort, allowing for an accurate delineation of the density of host‐seeking I. scapularis nymphs, an important component of human risk of infection for B. burgdorferi and other I. scapularis‐borne pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号