首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+]i) in cultured rat astrocytes. Single-cell [Ca2+]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines.  相似文献   

2.
Abstract: Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exogenous NO or cGMP. In vivo pretreatment with a NO synthase inhibitor reduced the phosphorylation of cGK II, and this could be reversed by exogenous NO or cGMP. Conversely, brainstem electrical stimulation, which enhances thalamic NO release, caused a NO synthase-dependent increase in the phosphorylation of thalamic cGK II. These results indicate that endogenous NO regulates cGMP-dependent protein phosphorylation in the thalamus. The activation of cGKII by NO may play a role in thalamic mechanisms underlying arousal.  相似文献   

3.
Abstract: Metabotropic glutamate receptors, nitric oxide (NO), and the signal transduction pathways of protein kinase C (PKC) and protein kinase A (PKA) can independently alter ischemic-induced neuronal cell death. We therefore examined whether the protective effects of metabotropic glutamate receptors during anoxia and NO toxicity were mediated through the cellular pathways of PKC or PKA in primary hippocampal neurons. Pretreatment with the metabotropic glutamate receptor agonists (±)-1-aminocyclopentane- trans -1,3-dicarboxylic acid, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD), and l (+)-2-amino-4-phosphonobutyric acid ( l -AP4) 1 h before anoxia or NO exposure increased hippocampal neuronal cell survival from ∼30 to 70%. In addition, posttreatment with 1 S ,3 R -ACPD or l -AP4 up to 6 h following an insult attenuated anoxic- or NO-induced neurodegeneration. In contrast, treatment with l -(+)-2-amino-3-phosphonopropionic acid, an antagonist of the metabotropic glutamate receptor, did not significantly alter neuronal survival during anoxia or NO exposure. Protection by the ACPD-sensitive metabotropic receptors, such as the subtypes mGluR1α, mGluR2, and mGluR5, appears to be dependent on the modulation of PKC activity. In contrast, l -AP4-sensitive metabotropic glutamate receptors, such as the subtype mGluR4, may increase neuronal survival through PKA rather than PKC. Thus, activation of specific metabotropic glutamate receptors is protective during anoxia and NO toxicity, but the signal transduction pathways mediating protection differ among the metabotropic glutamate receptor subtypes.  相似文献   

4.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

5.
Abstract: Treatment of rat cerebellar astrocyte-enriched primary cultures with dexamethasone enhances the nitric oxide-dependent cyclic GMP formation induced by noradrenaline in a time-(>6 h) and concentration-dependent manner (half-maximal effect at 1 n M ). Stimulation of cyclic GMP formation by the calcium ionophore A23187 is similarly enhanced. In contrast, cyclic GMP accumulation in cells treated with lipopolysaccharide is inhibited by dexamethasone. The potentiating effect of dexamethasone is prevented by the protein synthesis inhibitor cycloheximide and is not due to increased soluble guanylate cyclase activity. Agonist stimulation of [3H]arginine to [3H]citrulline conversion is enhanced by dexamethasone in astrocytes but not in cerebellar granule cells. These results indicate that glucocorticoids may up-regulate astroglial calcium-dependent nitric oxide synthase while preventing expression of inducible nitric oxide synthase and are the first report of a differential long-term regulation of the expression of neuronal and astroglial constitutive nitric oxide synthase activities.  相似文献   

6.
Abstract: It has been shown that nitric oxide (NO) regulates NO synthase (NOS) activity through negative feedback in cytosolic enzyme preparations in various cell types. We compared the effects of the NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) on NOS activity in intact neuroblastoma N1E-115 cells and in the cytosol obtained from the same cells. Enzyme activity was measured by the conversion of l -[3H]arginine into l -[3H]citrulline. At concentrations that elicit almost complete inhibition of NOS activity in cytosolic enzyme preparations of these cells, SIN-1 and SNP did not cause significant attenuation of enzyme activity measured at 45 min in intact cells. It is surprising that SIN-1 and SNP markedly stimulated l -[3H]citrulline formation in a time- and concentration-dependent manner when cells were incubated with the compounds for >1.5 h. Neither inhibitory nor stimulatory effects of SNAP on NOS were observed in intact N1E-115 cells. This is in contrast to the inhibitory effects of SNAP in cytosolic preparations of the enzyme. The increased NOS activity by SIN-1 or SNP in intact cells was dependent on the presence of extracellular Ca2+, suggesting that it might be due to increased Ca2+ influx. On the other hand, measurements of the activity of lactate dehydrogenase showed that there was no generalized increase in cell permeability in response to SIN-1 or SNP. There was no agreement in the rank order of potencies of these compounds in activating guanylate cyclase and in affecting NOS activity, both in broken-cell preparations and in intact cells. Thus, modulation of NOS activity by NO-releasing compounds is not dependent on cyclic GMP formation and might not be related in a simple fashion to NO generation. Alternatively, activation of guanylate cyclase and stimulation of NOS activity might require different redox species of NO. Our present findings might be of clinical relevance in relation to long-term use of NO-generating compounds as therapeutic agents.  相似文献   

7.
In Vivo Expression of Inducible Nitric Oxide Synthase in Cerebellar Neurons   总被引:5,自引:2,他引:5  
Abstract: In the CNS, nitric oxide (NO) functions as both neuromodulator and neurotoxic agent. In vivo neuronal expression of NO synthase (NOS) has been attributed to constitutive NOS—both the neuronal and the endothelial types. The other class of NOS—the inducible NOS (iNOS)—is known to mediate toxic effects of NO in various tissues. In this study, we show for the first time that direct intracerebellar injection of endotoxin and cytokine (lipopolysaccharide and interferon-γ) induced in vivo neuronal expression of the iNOS gene, as demonstrated by fluorescent in situ hybridization and immunohistochemical staining analyzed by confocal laser-scanning microscopy. This raises the possibility that neuronal iNOS might contribute significantly to the vulnerability of the brain to various insults.  相似文献   

8.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

9.
Abstract: KCl-evoked glutamate exocytosis from cerebrocortical synaptosomes can be inhibited by the adenosine A1 receptor agonist cyclohexyladenosine (CHA). Inhibition is associated with a decreased KCl-evoked Ca2+ level elevation, and the effect of the agonist is occluded by prior incubation with the Agelenopsis aperta neurotoxin ω-agatoxin-IVA at 250 n M . The inhibition is suppressed in the presence of 3 n M phorbol dibutyrate (PDBu) or by activation of the protein kinase C (PKC)-coupled metabotropic glutamate receptor by 100 µ M (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate [(1 S ,3 R )ACPD]. A tonic inhibition of release by leaked exogenous adenosine can be reversed by adenosine deaminase or by PDBu addition. The CHA-induced inhibition can be enhanced by the PKC inhibitor Ro 31-8220. The mechanism for the suppression of the adenosine A1 receptor-mediated inhibition is distinct from that previously described for the (1 S ,3 R )ACPD-evoked, PKC-mediated, facilitatory pathway, which enhances phosphorylation of the MARCKS protein, 4-aminopyridine-induced action potentials, and release of glutamate because the latter requires at least 100 n M PDBu [or the combination of (1 S ,3 R )ACPD and arachidonic acid] and is not seen following KCl depolarization. Both PKC-mediated pathways may be involved in the presynaptic events associated with the establishment of synaptic plasticity.  相似文献   

10.
Nitric Oxide Synthase in Bovine Superior Cervical Ganglion   总被引:1,自引:0,他引:1  
Abstract: We investigated the mechanism of increases in cyclic GMP levels in bovine superior cervical ganglion (SCG) in response to muscarinic receptor stimulation. Acetylcholine increased cyclic GMP levels in SCG. This increase was inhibited by N G-methyl-L-arginine (NMA), and the inhibition was reversed by L-arginine. Soluble nitric oxide (NO) synthase was partially purified from bovine SCG using 2',5'-ADP Sepharose affinity chromatography. The resulting enzyme activity was Ca2+/calmodulin dependent and required NADPH and tetrahydrobiopterin as co-factors. Superoxide dismutase protected and oxyhemo-globin blocked the effect of NO formed by the enzyme. NMA inhibited the activity of the NO synthase. In western blots, an antibody generated against rat brain NO synthase specifically recognized the NO synthase from SCG as a 155-kDa protein band. Immunohisto chemistry using the same antibody demonstrated that NO synthase was localized in postganglionic neuronal cell bodies of the SCG. Immunofluorescent labeling showed that some of the cells staining positive for dopamine-β-hydroxylase also contained NO synthase. Thus, NO is synthesized in specific cells within bovine SCG, including sympathetic neurons, and mediates the acetylcholine-induced stimulation of soluble guanylyl cyclase.  相似文献   

11.
The human dopamine D2L (long form) and D2S (short form) receptors were expressed separately in mouse Ltk- fibroblast cells to investigate whether there is a difference in transmembrane signaling of these D2 receptors. Both receptors induced two signals, a phosphatidylinositol-linked mobilization of intracellular calcium and an inhibition of cyclic adenosine 3'-5' monophosphate (cAMP) accumulation, each with similar response magnitudes and identical pharmacology. Both calcium and cAMP signals were sensitive to pretreatment with pertussis toxin (PTX), indicating mediation by coupling to Gi/Go proteins. However, the two forms of D2 receptor were distinguished by acute prior activation of protein kinase C (PKC) with 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (TPA): TPA blocked the D2S-mediated increase in cytosolic free calcium concentration ([Ca2+]i) in a concentration-dependent manner (between 10 nM and 1 microM), whereas the D2L receptor-induced increase in [Ca2+]i was resistant to TPA and was only partially (60%) inhibited by 100 microM TPA. By contrast, TPA did not alter the inhibition of cAMP accumulation induced by activation of either D2S or D2L receptors. We conclude that, in the L cell system, prior activation of PKC differentially modulates the transmembrane signaling of the D2L and D2S receptors, preferentially inhibiting the D2S receptor-mediated calcium signal but not altering the dopamine-induced inhibitory cAMP signal of either receptor subtype.  相似文献   

12.
软体动物的一氧化氮及其合酶的研究进展   总被引:6,自引:0,他引:6  
一氧化氮作为一种重要的信息分子,参与调节软体动物的嗅觉、运动、取食、机体防御及学习行为。本文从生理、生化、形态定位以及信号转导几方面综述了有关软体动物一氧化氮及其合酶的最新研究进展。  相似文献   

13.
Abstract: In the present study we investigated uptake of the nitric oxide (NO) synthase inhibitors N G-methyl- l -arginine and N G-nitro- l -arginine by the mouse neuroblastoma × rat glioma hybrid cell line NG108-15. Uptake of N G-methyl- l -arginine was characterized by biphasic kinetics ( K m1 = 8 µmol/L, V max1 = 0.09 nmol × mg−1× min−1; K m2 = 229 µmol/L, V max2 = 2.9 nmol × mg−1× min−1) and was inhibited by basic but not by neutral amino acids. Uptake of N G-nitro- l -arginine followed Michaelis-Menten kinetics ( K m = 265 µmol/L, V max = 12.8 ± 0.86 nmol × mg−1× min−1) and was selectively inhibited by aromatic and branched chain amino acids. Further characterization of the transport systems revealed that uptake of N G-methyl- l -arginine is mediated by system y+, whereas systems L and T account for the transport of N G-nitro- l -arginine. In agreement with these data on uptake of the inhibitors, l -lysine and l -ornithine antagonized the inhibitory effects of N G-methyl- l -arginine on bradykinin-induced intracellular cyclic GMP accumulation, whereas l -tryptophan, l -phenylalanine, and l -leucine interfered with the effects of N G-nitro- l -arginine. These data suggest that rates of uptake are limiting for the biological effects of NO synthase inhibitors.  相似文献   

14.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

15.
In rat pinealocytes, alpha 1-adrenergic activation, which leads to cytoplasmic alkalinization, also potentiates the beta-adrenergic stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) responses. Both elevation of intracellular calcium ([Ca2+]i) and activation of protein kinase C are involved in the potentiation mechanism. Recently, intracellular pH has also been found to modulate the adrenergic-stimulated cyclic nucleotide responses, suggesting intracellular pH may also affect the potentiation mechanism. This possibility was examined in the present study. Cytoplasmic alkalinization by ammonium chloride had an enhancing effect on the isoproterenol and ionomycin-stimulated cAMP and cGMP accumulation. In comparison, cytoplasmic acidification by sodium propionate reduced the isoproterenol and ionomycin-stimulated cAMP and cGMP responses. Direct measurement of [Ca2+]i indicated that neither ammonium chloride nor sodium propionate had an effect on the ionomycin-stimulated elevation of [Ca2+]i, suggesting their effects on cyclic nucleotide responses may be independent of [Ca2+]i. In cells stimulated by isoproterenol and an activator of protein kinase C, ammonium chloride had an enhancing effect on both cAMP and cGMP responses, whereas sodium propionate had no effect. Taken together, these results suggest that a site distal to elevation of [Ca2+]i and activation of protein kinase C, of importance to the potentiation mechanism, is modulated by intracellular pH.  相似文献   

16.
Abstract: Nerve terminals (“synaptosomes”) isolated from rat brain hippocampus were loaded with the fluorescent Ca2+ indicator fura-2 and were subjected to depolarization with an elevated K+ concentration in a stopped-flow spectrophotometer to measure the activity of voltage-gated Ca2+ channels in the presynaptic membrane. Three components of Ca2+ influx were seen, which were tentatively identified as two classes of voltage-dependent Ca2+ channels with different inactivation kinetics (τ of ~60 ms and 1 s, respectively) and Na+/Ca2+ exchange working in the “reverse” mode. The activity of both classes of voltage-dependent Ca2+ channels was slightly augmented by the phorbol ester phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), but the effect of PMA was markedly enhanced by the protein phosphatase inhibitor okadaic acid (OKA). The PKC inhibitors calphostin C and dihydrosphingosine (DHS) caused a prompt decrease in voltage-dependent Ca2+ channel activity, but the effect of DHS could be showed by coaddition of OKA. These results suggest that the activity of presynaptic voltage-dependent Ca2+ channels in the hippocampus is under a dynamic balance between PKC phosphorylation (leading to activation) and protein phosphatase dephosphorylation (leading to inactivation) and that both of these metabolic pathways are tonically active in the nerve terminals.  相似文献   

17.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

18.
逆转录病毒载体介导诱导型NO合酶在神经细胞中表达   总被引:4,自引:0,他引:4  
为了深入研究诱导型一氧化氮合酶基因表达产物在阿片耐受和依赖中作用,采用脂质体介导基因转染技术,将iNOS cDNA重组逆转录病毒载体导入NG108-15神经细胞,获得G418抗性克隆,命名为NG-LNCXiNOS细胞。DNA印迹杂交,PCR扩增及RT-PCR和蛋白质免疫印迹杂交分析,证实NG-LNCXiNOS细胞有外源iNOS基因整合,转录和表达;NADPH黄递酶(NADPH diaphorase  相似文献   

19.
Abstract: In this work, we have studied the effects of pure nitric oxide (NO) on the regulation of catecholamine (CA) secretion by chromaffin cells, as well as the possible presence of its synthesizing enzyme l -arginine:NO synthase (NOS) in these cells. Our results show that NO produces a large stimulation of basal CA secretion. This effect was calcium- and concentration-dependent (EC50 = 64 ± 8 µ M ) and was not due to nonspecific damage of the tissue by NO. NO also modulates the CA secretion evoked by nicotine in a dose-dependent manner. Although it has a stimulatory effect on the CA secretion evoked by low doses of nicotine (<3 µ M ; EC50 = 16 ± 3 µ M ), it produces a dose-dependent inhibition of the CA secretion induced by high doses of nicotine (≥30 µ M ; IC50 = 52 ± 6 µ M ). The mechanism by which NO modulates CA secretion seems to be through the increase in the cyclic GMP levels, because there was a close correlation between the CA secretion and the cyclic GMP levels. The presence of a specific activity of NOS in chromaffin cells has been demonstrated by two independent methods: release of [14C]citruiline from [14C]arginine and formation of an NO-hemoglobin complex. NOS activity was about 0.5 pmol/min/mg of protein. It was calcium- and mainly calmodulin-dependent and could be specifically blocked by the NOS inhibitor N -methyl- l -arginine. These results suggest that NO could be an important intracellular messenger in the regulation of neurosecretion in chromaffin cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号