首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of cytoskeleton and the origin of relevant intracellular transportation system are big problems for understanding the emergence of eukaryotic cells. The present article summarized relevant information of evidences and molecular traces on the origin of actin, tubulin, the chaperonin system for folding them, myosins, kinesins, axonemal dyneins and cytoplasmic dyneins. On this basis the authors proposed a series of works, which should be done in the future, and indicated the ways for reaching the targets. These targets are mainly: 1) the reconstruction of evolutionary path from MreB protein of archaeal ancestor of eukaryotic cells to typical actin; 2) the finding of the MreB or MreB-related proteins in crenarchaea and using them to examine J. A. Lake's hypothesis on the origin of eukaryote from "eocytes" (crenarchaea); 3) the examinations of the existence and distribution of cytoskeleton made of MreB-related protein within coccoid archaea, especially in amoeboid archaeon Thermoplasm acidophilum;  相似文献   

2.
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.  相似文献   

3.
Evolution of the cytoskeleton   总被引:1,自引:0,他引:1  
The eukaryotic cytoskeleton appears to have evolved from ancestral precursors related to prokaryotic FtsZ and MreB. FtsZ and MreB show 40-50% sequence identity across different bacterial and archaeal species. Here I suggest that this represents the limit of divergence that is consistent with maintaining their functions for cytokinesis and cell shape. Previous analyses have noted that tubulin and actin are highly conserved across eukaryotic species, but so divergent from their prokaryotic relatives as to be hardly recognizable from sequence comparisons. One suggestion for this extreme divergence of tubulin and actin is that it occurred as they evolved very different functions from FtsZ and MreB. I will present new arguments favoring this suggestion, and speculate on pathways. Moreover, the extreme conservation of tubulin and actin across eukaryotic species is not due to an intrinsic lack of variability, but is attributed to their acquisition of elaborate mechanisms for assembly dynamics and their interactions with multiple motor and binding proteins. A new structure-based sequence alignment identifies amino acids that are conserved from FtsZ to tubulins. The highly conserved amino acids are not those forming the subunit core or protofilament interface, but those involved in binding and hydrolysis of GTP.  相似文献   

4.
Actin and tubulin are the major components of the cytoskeleton that pervades the cytoplasm of all eukaryotic cells. These proteins were traditionally thought not to be present in prokaryotes, but structural and functional homologues of tubulin (FtsZ) and actin (MreB) are now known to be present virtually throughout the eubacteria and in some archae. FtsZ protein is a key player in cell division of bacteria and some eukaryotic organelles. MreB proteins are involved in the regulation of cell shape and the segregation of some bacterial plasmids, and might have a range of other functions. Recent data demonstrate that the bacterial proteins are, like their eukaryotic counterparts, highly dynamic. Here, we review the general properties and functions of actin and tubulin homologues in bacteria, their dynamic behaviour and the implications for understanding cell division and morphogenesis in bacteria.  相似文献   

5.
Structural proteins are now known to be as necessary for controlling cell division and cell shape in prokaryotes as they are in eukaryotes. Bacterial ParM and MreB not only have atomic structures that resemble eukaryotic actin and form similar filaments, but they are also equivalent in function: the assembly of ParM drives intracellular motility and MreB maintains the shape of the cell. FtsZ resembles tubulin in structure and in its dynamic assembly, and is similarly controlled by accessory proteins. Bacterial MinD and eukaryotic dynamin appear to have similar functions in membrane control. In dividing eukaryotic organelles of bacterial origin, bacterial and eukaryotic proteins work together.  相似文献   

6.
The structural and functional resemblance between the bacterial cell-division protein FtsZ and eukaryotic tubulin was the first indication that the eukaryotic cytoskeleton may have a prokaryotic origin. The bacterial ancestry is made even more obvious by the findings that the bacterial cell-shape-determining proteins Mreb and Mbl form large spirals inside non-spherical cells, and that MreB polymerises in vitro into protofilaments very similar to actin. Recent advances in research on two proteins involved in prokaryotic cytokinesis and cell shape determination that have similar properties to the key components of the eukaryotic cytoskeleton are discussed.  相似文献   

7.
The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.  相似文献   

8.
Actin, a central component of the eukaryotic cytoskeleton, plays a crucial role in determining cell shape in addition to several other functions. Recently, the structure of the archaeal actin homolog Ta0583, isolated from the archaeon Thermoplasma acidophilum, which lacks a cell wall, was reported by Roeben et al. (J. Mol. Biol. 358:145-156, 2006). Here we show that Ta0583 assembles into bundles of filaments similar to those formed by eukaryotic actin. Specifically, Ta0583 forms a helix with a filament width of 5.5 nm and an axial repeating unit of 5.5 nm, both of which are comparable to those of eukaryotic actin. Eukaryotic actin shows a greater resemblance to Ta0583 than to bacterial MreB and ParM in terms of polymerization characteristics, such as the requirement for Mg(2+), critical concentration, and repeating unit size. Furthermore, phylogenetic analysis also showed a closer relationship between Ta0583 and eukaryotic actin than between MreB or ParM and actin. However, the low specificity of Ta0583 for nucleotide triphosphates indicates that Ta0583 is more primitive than eukaryotic actin. Taken together, our results suggest that Ta0583 retains the ancient characteristics of eukaryotic actin.  相似文献   

9.
10.
长期以来,人们认为细胞骨架仅为真核生物所特有的结构,但近年来的研究发现它也存在于细菌等原核生物中。目前已经在细菌中发现的FtsZ、MreB和CreS依次与真核细胞骨架蛋白中的微管蛋白、肌动蛋白丝及中间丝类似。FtsZ能在细胞分裂位点装配形成Z环结构,并通过该结构参与细胞分裂的调控;MreB能形成螺旋丝状结构,其主要功能有维持细胞形态、调控染色体分离等;CreS存在于新月柄杆菌中,它在细胞凹面的细胞膜下面形成弯曲丝状或螺旋丝状结构,该结构对维持新月柄杆菌细胞的形态具有重要作用。  相似文献   

11.
Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery of crescentin, a cell-shape-determining protein that resembles eukaryotic intermediate filament proteins, the third major cytoskeletal element has now been identified in bacteria as well.  相似文献   

12.
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.  相似文献   

13.
The Bacterial Actin-Like Cytoskeleton   总被引:13,自引:0,他引:13       下载免费PDF全文
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.  相似文献   

14.
Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes.  相似文献   

15.
Numerous scenarios explain the origin of the eukaryote cell by fusion or endosymbiosis between an archaeon and a bacterium (and sometimes a third partner). We evaluate these hypotheses using the following three criteria. Can the data be explained by the null hypothesis that new features arise sequentially along a stem lineage? Second, hypotheses involving an archaeon and a bacterium should undergo standard phylogenetic tests of gene distribution. Third, accounting for past events by processes observed in modern cells is preferable to postulating unknown processes that have never been observed. For example, there are many eukaryote examples of bacteria as endosymbionts or endoparasites, but none known in archaea. Strictly post‐hoc hypotheses that ignore this third criterion should be avoided. Applying these three criteria significantly narrows the number of plausible hypotheses. Given current knowledge, our conclusion is that the eukaryote lineage must have diverged from an ancestor of archaea well prior to the origin of the mitochondrion. Significantly, the absence of ancestrally amitochondriate eukaryotes (archezoa) among extant eukaryotes is neither evidence for an archaeal host for the ancestor of mitochondria, nor evidence against a eukaryotic host. BioEssays 29: 74–84, 2007. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
Spiraled origins     
Champion M 《Molecular cell》2005,17(4):475-477
Recent studies have established that the eukaryotic actin-based cytoskeleton has prokaryotic origins. In addition to regulating cell shape and polarity, Gitai et al. (2005) provide convincing evidence that the Caulobacter actin homolog MreB also mediates the early segregation of the chromosomal origin, a typical functional role of the eukaryotic tubulin-based cytoskeleton.  相似文献   

17.
In all three branches of life, some organisms incorporate the rare amino acid selenocysteine. Selenoproteins are relevant to the controversy over the metabolic features of the archaeal ancestor of eukaryotes because among archaea, several known selenoproteins are involved in methanogenesis and autotrophic growth. Although the eukaryotic selenocysteine-specific translation apparatus and at least one selenoprotein appear to be of archaeal origin, selenoproteins have not been identified among sulfur-metabolizing crenarchaeotes. In this regard, both the phylogeny and function of archaeal selenoproteins are consistent with the argument that the archaeal ancestor was a methanogen. Selenium, however, is abundant in sulfur-rich environments, and some anaerobic bacteria reduce sulfur and have selenoproteins similar to those in archaea. As additional archaeal sequence data becomes available, it will be important to determine whether selenoproteins are present in nonmethanogenic archaea, especially the sulfur-metabolizing crenarchaeotes.  相似文献   

18.
The recent discoveries of prokaryotic homologs of all three major eukaryotic cytoskeletal proteins (actin, tubulin, intermediate filaments) have spurred a resurgence of activity in the field of bacterial morphology. In spirochetes, however, it has long been known that the flagellar filaments act as a cytoskeletal protein structure, contributing to their shape and conferring motility on this unique phylum of bacteria. Therefore, revisiting the spirochete cytoskeleton may lead to new paradigms for exploring general features of prokaryotic morphology. This review discusses the role that the periplasmic flagella in spirochetes play in maintaining shape and producing motility. We focus on four species of spirochetes: Borrelia burgdorferi, Treponema denticola, Treponema phagedenis and Leptonema (formerly Leptospira) illini. In spirochetes, the flagella reside in the periplasmic space. Rotation of the flagella in the above species by a flagellar motor induces changes in the cell morphology that drives motility. Mutants that do not produce flagella have a markedly different shape than wild-type cells.  相似文献   

19.
Proteins structurally related to eukaryotic actins have recently been identified in several prokaryotic organisms. These actin-like proteins (MreB and ParM) and the deviant Walker A ATPase (SopA) play a key role in DNA segregation and assemble into polymers in vitro and in vivo. MreB also plays a role in cellular morphogenesis. Whereas the dynamic properties of eukaryotic actins have been extensively characterized, those of bacterial actins are only beginning to emerge. We have established the fission yeast Schizosaccharomyces pombe as a cellular model for the functional analysis of the Escherichia coli actin-related protein MreB. We show that MreB organizes into linear bundles that grow in a symmetrically bidirectional manner at 0.46 +/- 0.03 microm/min, with new monomers and/or oligomers being added along the entire length of the bundle. Organization of linear arrays was dependent on the ATPase activity of MreB, and their alignment along the cellular long axis was achieved by sliding along the cortex of the cylindrical part of the cell. The cell ends appeared to provide a physical barrier for bundle elongation. These experiments provide new insights into the mechanism of assembly and organization of the bacterial actin cytoskeleton.  相似文献   

20.
Faithful chromosome segregation is vital to all organisms. Eukaryotic cells use the tubulin-based cytoskeleton to segregate their chromosomes during mitosis. A handful of papers have provided convincing evidence that, in bacteria, this task is accomplished by the actin homolog MreB. In particular, a recent study by Gitai et al. demonstrates that MreB specifically binds to and segregates the replication origin of the bacterial chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号