首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP-dependent protein kinase, which plays a major role in metabolic and genetic regulation, consists of two classes of isozymes denoted as type I and type II. The type II isozyme, moreover, consists of two subclasses denoted as neural and non-neural based upon immunochemical differences between the enzyme isolated from bovine brain and heart, respectively. Whereas the catalytic (C) subunits of these three isozymes are quite similar, all three isozymes differ with respect to their regulatory (R) subunits. In the present report, we have compared the sensitivities to cyclic AMP of the type I and type II isozymes in several tissues from a single species (rat). The sensitivities of the three isozymes to cyclic AMP were type I much greater than non-neural type II greater than neural type II. We suggest that the differences in sensitivity to cyclic AMP of isozymes present in the same cell provides the cell with a dynamic range of responses to the widely varying alterations in cellular cyclic AMP levels produced by regulatory first messengers.  相似文献   

2.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

3.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

4.
Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide- dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.  相似文献   

5.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

6.
Cyclic AMP-dependent protein kinase (cAPK) mediates the effects of catecholamines and hormones that cause elevation of intracellular cyclic AMP levels. The holoenzyme is a tetramer consisting of catalytic (C) and cyclic AMP-binding regulatory (R) subunits. The type I and type II cAPK isoenzymes are defined by R subunits (RI and RII) of differing molecular weight, primary structure, and cyclic AMP-binding properties. Postembedding immunogold labeling procedures and specific polyclonal and monoclonal antibodies to RI, RII, and C were used to study the subcellular distribution of cAPK subunits in several tissues. In the rat parotid gland, both RI and RII were present in the cytoplasm, nuclei, and secretory granules of the acinar cells, whereas secretory granules of intercalated and striated duct cells were poorly labeled. These results confirmed that the acinar secretory granules are the source of R subunits previously identified in saliva by specific photoaffinity labeling techniques. Zymogen granules of pancreatic acinar cells and secretory granules of seminal vesicle cells were labeled with antibody to RII. Pancreatic and seminal fluids were shown to contain cyclic AMP-binding proteins. The granules of several endocrine cells (pituitary, pancreatic islet, intestinal) also labeled with RII antibody. Double labeling of ovarian granulosa cells showed that both RI and C were present in the nuclei and cytoplasm. The localization of cAPK subunits revealed by postembedding immunogold labeling is consistent with the postulated regulatory functions of these proteins in gene expression, cell proliferation, exocytosis, and various metabolic events The widespread occurrence of cAPK subunits in secretory granules and their release to the extracellular environment suggests that they play an important role in secretory cell function.  相似文献   

7.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

8.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

9.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

10.
1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific.  相似文献   

11.
Two cyclic AMP-binding proteins, not identical with regulatory subunits of protein kinases, have been isolated from Trypanosoma gambiense. The cyclic AMP receptors were separated by gel chromatography on the basis of their molecular weights. The binding constants of the high and the low molecular weight receptors for cyclic AMP were determined to be 0.4 muM and 0.6 muM, respectively. Cyclic IMP and cyclic GMP compete with cyclic AMP for the binding sites of both receptors. The cyclic AMP binding of the low molecular weight receptor was competitively inhibitied by adenine derivatives. The binding capacity of the high molecular weight receptor was enhanced about two-fold by proteolytic modification with trypsin.  相似文献   

12.
In mammalian species, cyclic AMP receptor proteins (cARP) are the regulatory (R) subunits of cyclic AMP-dependent protein kinase (PKA), the cellular effector of cyclic AMP-mediated signal transduction. An isoform of the PKA type II R subunit (RII), cARP, is a polyfunctional protein, present in most tissues and cells. It is expressed in salivary and other glands of rodents, and secreted into the saliva of rats and Man. The aim of the present study was to determine the expression of cARP in human salivary glands using immunoelectron microscopy. Thin sections of normal salivary glands embedded in LR Gold resin were labeled with anti-cARP primary antibody, then with gold-conjugated secondary antibody. Labeling was present in the secretory granules and cytoplasm of parotid, submandibular (SMG) and sublingual gland serous cells. Quantitative analysis showed considerable variability in granule labeling from sample to sample, indicating shifts in expression and cellular location of cARP. Unlike rodent salivary glands, the granules of intercalated and striated duct cells also were labeled. The cytoplasm and granules of mucous cells of the SMG and sublingual glands were unlabeled, while the Golgi complex and filamentous bodies in these cells showed moderate reactivity. Mitochondria and nuclei of both serous and mucous cells were unlabeled. Labeling also was present in the connective tissue adjacent to the epithelial cells. The results indicate that serous cells of the parotid and SMG are the major source of salivary cARP. They also reveal significant species differences in the glandular distribution of RII. RII binds to cytoskeletal and nuclear proteins, and may function to regulate extracellular cyclic AMP levels. Thus, the tissue and cellular distribution of RII may serve as an index of regulation of gene expression and cell differentiation.  相似文献   

13.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

14.
Biospecific affinity chromatography has been used to purify specific cyclic AMP and cyclic GMP receptor proteins. Several variables are important for successful purification of the cyclic AMP receptor protein, the most critical being the length of the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to agarose specifically retains the cyclic AMP receptor protein by interaction with the immobilized nucleotide. Binding of the cyclic AMP receptor subunit of cyclic AMP-dependent protein kinase to the immobilized nucleotide results in dissociation of the catalytic protein phosphokinase subunit which is not retained. The retained cyclic AMP receptor protein is subsequently eluted by cyclic AMP. Homogeneous cyclic AMP receptor protein prepared from rabbit skeletal muscle by affinity chromatography has been characterized. The molecular weight of the native protein as determined by analytical ultracentrifugation and polyacrylamide gel electrophoresis at varying acrylamide concentrations is 76 800 and 82 000, respectively. The protein is asymmetric with frictional and axial ratios of 1.64 and 12. SDS and urea polyacrylamide gel electrophoresis indicate that the native cyclic AMP receptor is composed of two identical subunits of 42 700 molecular weight. The native protein dimer binds 2 moles of cyclic AMP per mole of protein and is active in suppressing activity of isolated catalytic subunits of cyclic AMP-dependent protein kinase. Cyclic GMP receptor protein from bovine lung has been purified using the same affinity chromatography media. Since cyclic nucleotide binding to cyclic GMP-dependent protein kinase does not result in dissociation of regulatory receptor and catalytic phosphotransferase subunits, the cyclic GMP-dependent protein kinase holoenzyme is retained on the column and can be subsequently specifically eluted with cyclic GMP.  相似文献   

15.
Insulin control of cyclic AMP phosphodiesterase   总被引:1,自引:0,他引:1  
J A Smoake  S S Solomon 《Life sciences》1989,45(23):2255-2268
Cyclic AMP phosphodiesterase (PDE) is an enzyme involved in cellular homeostasis of cyclic AMP. It exists as multiple isozymes in cells, but only the high affinity, membrane-bound isozyme is sensitive to hormonal modulation. Several isozymes or isoforms of the low Km PDE have been detected. Data suggest that several mechanisms exist for hormonal modulation of PDE. Activity of the low Km PDE species may be modulated by phosphorylation/dephosphorylation, phospholipid substrate concentration, insulin second messenger, cyclic GMP, guanine nucleotide binding proteins, calmodulin, or aggregation/disaggregation of monomeric forms. Modulation of PDE isoforms by different hormones may be through different regulatory components or mechanisms.  相似文献   

16.
The adenosine 3',5'-monophosphate receptor proteins of HeLa cells have been characterized. Using the Millipore filter assay, in the presence of 5'AMP and a phosphodiesterase inhibitor, specific [3H]cyclic AMP binding was detected in cytosol and in a nuclear-free particulate fraction, but not in nuclei. Both preparations exhibited biphasic Scatchard plots. 8-Azido[32P]cyclic AMP was used as a photoaffinity probe to covalently link ligand with receptor proteins. Proteins were then separated on denaturing gels and analyzed by autoradiography. The cytosol exhibited four specific binding proteins, with molecular weights of 46 000, 50 000, 52 000 and approx. 120 000. The 50 000/52 000 doublet could not be interconverted by phosphorylation-dephosphorylation reactions. On DEAE-cellulose, the 50 000-dalton protein eluted with peak II cyclic AMP-dependent protein kinase. The other proteins eluted with Peak I and with a binding peak not associated with kinase activity. Only the 50 000 protein was precipitated by type II protein kinase antibody from bovine heart. In the particulate fraction, the 120 000 protein was not detectable, but 8-azido[32P]cyclic AMP treatment revealed the other three proteins, with a relative increase in the 50 000-dalton protein. The results suggest that HeLa cells have four binding proteins which can associate with catalytic subunit and that the Peak I enzyme is heterogeneous, consisting of several distinct regulatory subunits.  相似文献   

17.
Summary Protein-bound cyclic AMP (cAMP) levels in cultured rat Sertoli cells have been determined after exposure to follicle-stimulating hormone (FSH) and agents which elevate intracellular cAMP or mimic cAMP action. Changes in the content of protein-bound cAMP were correlated with changes in receptor availability determined by measuring [3H] cAMP binding. Using the photoaffinity analog of cAMP, 8-N3 [32P] cAMP, two major cAMP-binding proteins in Sertoli cell cytosol, with molecular weights of 47 000 and 53 000 daltons, were identified as regulatory subunits of type I and type II cAMP-dependent protein kinases, respectively. Densitometric analysis of autoradiograms demonstrated differential activation of the two isozymes in response to treatment with FSH and other agents. Results of this study demonstrate the value of measuring changes in protein-bound cAMP and the utility of the photoaffinity labeling technique in correlating hormone-dependent processes in which activation of cAMP-dependent protein kinase occurs.  相似文献   

18.
Biochemical and immunochemical studies were undertaken to quantify the effects of cyclic AMP on cyclic AMP-dependent protein kinase subunit levels in nuclei of H4IIE hepatoma cells. Dibutyryl cyclic AMP (10 microM) caused a significant biphasic (10 and 120 min after stimulation) increase in total nuclear protein kinase activity. The increase observed 10 min after dibutyryl cyclic AMP stimulation was primarily due to an approx. 3-fold increase of catalytic (C) subunit activity, whereas the change observed 120 min after stimulation consisted of an increase in both C subunit and cyclic AMP-independent protein kinase activities. Analysis of nuclear protein extracts by photoaffinity labelling with 8-azido cyclic [32P]AMP identified only the type II regulatory subunit (RII), but not the type I regulatory subunit (RI). Analysis of nuclear RII variants by two-dimensional gel electrophoresis demonstrated that dibutyryl cyclic AMP caused the appearance of two RII variant forms which were not present in the nuclei of unstimulated cells. Using affinity-purified polyclonal antibodies and immunoblotting procedures, we identified an approx. 2-fold increase in the RII and C subunits in nuclear extracts of dibutyryl cyclic AMP-treated hepatoma cells. Finally, the RI, RII and C subunits were quantified by an e.l.i.s.a. which indicated that dibutyryl cyclic AMP increased nuclear RII and C subunits levels biphasically, reaching peak values 10 and 120 min after the initial stimulation. Nuclear RI subunit levels were not affected. These results provide qualitative as well as quantitative evidence for a modulation by cyclic AMP of the nuclear RII and C subunit levels in rat H4IIE hepatoma cells, and indicate a relatively rapid but temporarily limited dibutyryl cyclic AMP-induced translocation of the RII and C subunits to nuclear sites.  相似文献   

19.
1. The fluctuations in rat hepatocyte volume and protein content in response to dietary perturbations (starvation, protein restriction, refeeding) were accompanied by corresponding fluctuations in the amount of the regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase. Thus the intracellular concentration of this key enzyme was adjusted to be near constant. 2. The adjustment of cellular R was accomplished almost exclusively by regulating cytosolic RI (R subunit of type I kinase). The preferential down-regulation of cytosolic RI in response to starvation/protein restriction indicates that particulate RI and cytosolic as well as particulate RII are more resistant to breakdown during general catabolism in the hepatocyte. 3. The diet-induced fluctuations of kinase subunits were uniformly distributed in all populations of parenchymatous hepatocytes, regardless of their size and density. It is thus possible to isolate hepatocytes with uniformly altered RI/RII ratio from livers of rats with different feeding regimens. 4. The binding of endogenous cyclic AMP to RI and RII was similar in livers with high RI/RII ratio (fed rats) and low RI/RII ratio (fasted rats) as well as in hepatocytes isolated from fasted rats. Under the conditions of the experiment (short-term stimulation by glucagon), therefore, neither the dietary state nor the RI/RII ratio seemed to affect the apparent affinity of the isoreceptors for cyclic AMP. However, RI appeared to show a slightly higher co-operativity of intracellular cyclic AMP binding than did RII in all states.  相似文献   

20.
Certain hormonal primary messengers identified in the mammalian palate during its ontogeny transmit information to the interior of the cell via transmembrane signaling systems that control the production of the secondary messenger cyclic adenosine monophosphate. The singular role of intracellular cyclic AMP is to activate cAMP-dependent protein kinases (cAMP-dPK). cAMP-dPK were thus identified and characterized in the developing murine embryonic palate. Incubation of cytosolic fractions of embryonic palatal tissue with cAMP resulted in a dose-dependent increase in the cAMP-dPK activity ratio. A transient elevation of basal cAMP-dPK was seen during the period of palatal ontogeny that corresponded temporally with a previously demonstrated transient elevation of palatal basal cAMP levels. Fractions of embryonic palatal tissue cytosols derived by diethylaminoethyl (DEAE)-Sephacel chromatography were analyzed for phosphotransferase activity and for [3H]-cAMP binding to the regulatory (R) subunits of cAMP-dPK. Such analyses revealed two peaks of activity on day 13 of gestation. Based on the salt concentration at which the material in these peaks eluted from DEAE, its ability to cochromatograph with authentic cAMP-dPK isozymes, its molecular weight as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis, and the ability of the material to be photoaffinity labeled with [3H]-8-azidoadenosine 3',5' cyclic phosphate, types I and II cAMP-dPK were identified. Regulatory subunits of cAMP-dPK were characterized by the binding of [3H]-cAMP to cytosolic fractions of embryonic palatal tissue. Such binding was saturable (Bmax = 1,096 fmol/mg protein) and of high affinity (Kd = 7 nM). Only cAMP and cyclic guanosine monophosphate competed in a dose-related manner with [3H]-cAMP for binding to R subunits of cAMP-dPK. Adenosine, cTMP, and adenosine triphosphate, at doses up to 10(-4) M, did not compete for binding. Temporal analysis of binding data indicated that the number of binding sites transiently decreased during day 13 of gestation. Characterization of cAMP-dPK in tissue derived from the developing mammalian palate allows consideration of cAMP-dPK as a key regulatory enzyme capable of transducing hormonally elevated intracellular levels of cAMP into metabolic responses during orofacial ontogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号