首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.  相似文献   

2.
The functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18 kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~ 10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51 Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug–membrane interactions may contribute to the apparent affinity of TSPO ligands.  相似文献   

3.
Various attempts to increase the therapeutic index of the drug while minimizing side effects have been made in drug delivery systems. Among several promising strategies, liposomes represent an advanced technology to target active molecules to the site of action. Rapid clearance of circulating liposomal drugs administered intravenously has been a critical issue because circulation time in the blood affects drug exposure at the target site. The clinical use of liposomal drugs is complicated by large intra- and interindividual variability in their pharmacokinetics (PK) and pharmacodynamics (PD). Thus, it is important to understand the factors affecting the PK/PD of the liposomal formulation of drugs and to elucidate the mechanisms underlying the variability in the PK/PD of liposomal drugs. In this review article, we describe the characteristics of liposome formulations and discuss the effects of various factors, including liposome-associated factors, host-associated factors, and treatment on the PK/PD of liposomal agents.  相似文献   

4.
Various attempts to increase the therapeutic index of the drug while minimizing side effects have been made in drug delivery systems. Among several promising strategies, liposomes represent an advanced technology to target active molecules to the site of action. Rapid clearance of circulating liposomal drugs administered intravenously has been a critical issue because circulation time in the blood affects drug exposure at the target site. The clinical use of liposomal drugs is complicated by large intra- and interindividual variability in their pharmacokinetics (PK) and pharmacodynamics (PD). Thus, it is important to understand the factors affecting the PK/PD of the liposomal formulation of drugs and to elucidate the mechanisms underlying the variability in the PK/PD of liposomal drugs. In this review article, we describe the characteristics of liposome formulations and discuss the effects of various factors, including liposome-associated factors, host-associated factors, and treatment on the PK/PD of liposomal agents.  相似文献   

5.
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.  相似文献   

6.
Significant progress has been made in understanding pharmacokinetics (PK),pharmacodynamics (PD),as well as toxicity profiles of therapeutic proteins in animals and humans,which have been in commercial development for more than three decades.However,in the PK arena,many fundamental questions remain to be resolved.Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans,and from in vitro assays to in vivo readouts,which would ultimately lead to a higher success rate in drug development.In toxicology,it is known,in general,what studies are needed to safely develop therapeutic proteins,and what studies do not provide relevant information.One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity.In this review,we will highlight the emerging science and technology,as well as the challenges around the pharmacokinetic-and safety-related issues in drug development of mAbs and other therapeutic proteins.  相似文献   

7.
Cystinosis is a disorder associated with excessive lysosomal cystine accumulation secondary to defective cystine efflux. Patients affected by this disease develop a variable degree of symptoms depending on the involved tissues. Accumulation of cystine in myocardium may lead to heart failure. However, the mechanisms by which cystine is toxic to the tissues are not fully understood. Considering that thiolic enzymes like pyruvate kinase (PK) may be altered by disulfides like cystine, the main objective of the present study was to investigate the effect of cystine on PK activity in the heart of developing rats. We performed kinetic studies and investigated the effects of reduced glutathione (GSH), a biologically occurring thiol groups protector, and cysteamine, the drug used for cystinosis treatment, on the enzyme activity. We observed that cystine inhibited the enzyme activity non-competitively in a dose- and time-dependent way. We also observed that GSH and cysteamine fully prevented and reversed the inhibition caused by cystine, suggesting that cystine inhibits PK activity by oxidation of the sulfhydryl groups of the enzyme. Although there is no definite proof of cystine within cytoplasm, there is indirect proof t it is able to escape lysosomes and come in contact with PK. Considering that cysteamine is used in patients with cystinosis because it causes parenchymal organ cystine depletion, the present data provide a possible new effect for this drug.  相似文献   

8.
The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0–12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects.  相似文献   

9.
An increasing number of protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. Some PK inhibitors display antiproliferative effects on protozoa. We tested three PK inhibitors on the growth and ultrastructure of epimastigotes of Trypanosoma cruzi and the effect of these drugs on intracellular amastigotes. They were staurosporine (serine/threonine kinase inhibitor), genistein (tyrosine kinase inhibitor), and wortmannin (phosphatidylinositol 3' (PI3) kinase inhibitor). All drugs inhibited epimastigote growth at the concentrations tested. Wortmannin inhibited parasite growth at the lowest concentrations. However, staurosporine was the most effective after 24 h treatment and genistein caused the stronger inhibition during the whole treatment (60-70% inhibition). The IC50 were: staurosporine: 6.43+/-1.28 microM; genistein: 6.54+/-1.86 microM; and wortmannin: 0.056+/-0.014 microM. These PK inhibitors had strong ultrastructural effects on the epimastigotes: abnormal chromatin condensation of the nucleus; loose flagellar membrane with the formation of blebs; incomplete cell division; autophagosomes and myelin-like figures. These drugs did not interfere with the division of intracellular amastigotes or with its differentiation to trypomastigotes. However, as trypanosomes have kinomes that contain a large set of protein kinases and phosphatases, PKs should not be disregarded as an important target for chemotherapy of Chagas disease.  相似文献   

10.
Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ~45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.  相似文献   

11.
Dynamic contrast enhanced (DCE-) MRI is commonly applied for the monitoring of antiangiogenic therapy in oncology. Established pharmacokinetic (PK) analysis methods of DCE-MRI data do not sufficiently reflect the complex anatomical and physiological constituents of the analyzed tissue. Hence, accepted endpoints such as Ktrans reflect an unknown multitude of local and global physiological effects often rendering an understanding of specific local drug effects impossible. In this work a novel multi-compartment PK model is presented, which for the first time allows the separation of local and systemic physiological effects. DCE-MRI data sets from multiple, simultaneously acquired tissues, i.e. spinal muscle, liver and tumor tissue, of hepatocellular carcinoma (HCC) bearing rats were applied for model development. The full Markov chain Monte Carlo (MCMC) Bayesian analysis method was applied for model parameter estimation and model selection was based on histological and anatomical considerations and numerical criteria. A population PK model (MTL3 model) consisting of 3 measured and 6 latent (unobserved) compartments was selected based on Bayesian chain plots, conditional weighted residuals, objective function values, standard errors of model parameters and the deviance information criterion. Covariate model building, which was based on the histology of tumor tissue, demonstrated that the MTL3 model was able to identify and separate tumor specific, i.e. local, and systemic, i.e. global, effects in the DCE-MRI data. The findings confirm the feasibility to develop physiology driven multi-compartment PK models from DCE-MRI data. The presented MTL3 model allowed the separation of a local, tumor specific therapy effect and thus has the potential for identification and specification of effectors of vascular and tissue physiology in antiangiogenic therapy monitoring.  相似文献   

12.
Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r2 = 0.83, r = 0.91, p < 0.01) better than NHP (r2 = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic.  相似文献   

13.
Optimisation of compound pharmacokinetics (PK) is an integral part of drug discovery and development. Animal in vivo PK data as well as human and animal in vitro systems are routinely utilised to evaluate PK in humans. In recent years machine learning and artificial intelligence (AI) emerged as a major tool for modelling of in vivo animal and human PK, enabling prediction from chemical structure early in drug discovery, and therefore offering opportunities to guide the design and prioritisation of molecules based on relevant in vivo properties and, ultimately, predicting human PK at the point of design. This review presents recent advances in machine learning and AI models for in vivo animal and human PK for small-molecule compounds as well as some examples for antibody therapeutics.  相似文献   

14.
The effect of intravenous and oral administration of magnesium containing drug (Magnesium Diasporal, Protina, München) on the erythrocyte pyruvate kinase (PK) activity in two cases of congenital nonspherocytic hemolytic anemia associated with PK deficiency has been examined. Intravenous injection of the drug has been followed by transient increase in magnesium content. Positive correlation between erythrocyte magnesium ions concentration and PK activity has been found. The authors propose a hypothesis that the observed correlation may be due to the erythrocyte accumulation of some PK activators or to the elimination of some PK inhibitors. The authors did not, however, succeed to maintain the high erythrocyte magnesium concentration inducing the increase in PK activity during the longer period of time.  相似文献   

15.
Daily intraperitoneal administration to rats of 5 mg/kg of chlorpromazine (CPZ) for 21 days induced a significant up-regulation (51%) of peripheral benzodiazepine binding sites (PBSs) in cerebral cortex and a down-regulation of PBSs in the heart (25%) and kidney (14%), whereas no alteration in [3H]flunitrazepam binding in cerebral cortex was observed. [3H]PK 11195 binding to cerebral cortex returned to normal following 5 days of CPZ withdrawal, whereas the density of PBSs in the heart and kidney remained reduced. The affinity of PBSs for the ligand [3H]PK 11195 in the cerebral cortex and heart was not affected by the drug treatment or withdrawal. The CPZ-induced alterations in PBSs may be relevant to the effects of the drug on CNS and/or peripheral organs.  相似文献   

16.
The pharmacokinetics (PK), biodistribution (BD), and therapeutic activity of pegylated liposomal doxorubicin formulations with different drug release rates were studied in an orthotopic 4T1 murine mammary carcinoma model. The focus of these experiments was to study the effects of different release rates on the accumulation of liposomal lipid and doxorubicin (DXR) into the tumor and cutaneous tissues of mice (skin and paws). These tissues were chosen because the clinical formulation of pegylated liposomal doxorubicin (Caelyx)/Doxi) causes mucocutaneous reactions such as palmar-plantar erythrodysesthesia (PPE). Liposomes with different doxorubicin (DXR) leakage rates were prepared by altering liposome fluidity through changing the fatty acyl chain length and/or degree of saturation of the phosphatidylcholine component of the liposome. Liposomes with fast, intermediate, and slow rates of drug release were studied. The plasma PK of the liposomal lipid was similar for all formulations, while the plasma PK of the DXR component was dependent on the liposome formulation. Liposomal lipid accumulated to similar levels in tumor and cutaneous tissues for all three formulations tested, while the liposomes with the slowest rates of DXR release produced the highest DXR concentrations in both cutaneous tissues and in tumor. Liposomes with the fastest drug release rates resulted in low DXR concentrations in cutaneous tissues and tumor. The formulation with intermediate release rates produced unexpected toxicity that was not related to the lipid content of the formulation. The liposomes with the slowest rate of drug leakage had the best therapeutic activity of the formulations tested.  相似文献   

17.
《MABS-AUSTIN》2013,5(4):859-870
Although there are currently more than 30 antibody-drug conjugates (ADC) in clinical development for the treatment of blood cancers and solid tumors, comparison of their clinical pharmacokinetics (PK) is challenging because of the large number of, and differences between, the targets, ADC constructs, dosing regimens, and patient populations. In this review, we standardized the evaluation, using non-compartmental PK data reported at Cycle 1, i.e., following the first drug administration of what is usually a repeated-dose treatment, in monotherapy. We report ADC clinical PK properties, dosing regimen, determination of doses ranges and associated maximum tolerated doses. We also evaluated the effect of structural characteristics and target types (hematological vs. solid tumors) on PK. In addition, we discuss how integration of PK/pharmacodynamics approaches on top of classical dose escalation in first-in-human studies may improve dosing regimen determination for subsequent phases of clinical development.  相似文献   

18.
We have used a renaturation method to search for previously unidentified protein kinases in human platelets. The method involves subjecting lysates to denaturing gel electrophoresis, transferring the proteins to blotting membranes, and treating the blotted proteins with guanidine. The guanidine is then removed to allow the proteins to renature, and the blots are overlaid with [gamma-32P]ATP. We have identified 14 electrophoretically distinct, serine/threonine-specific protein kinases. Eleven of the kinases clearly differ in molecular weight from all previously described platelet serine/threonine kinases. Ten of these novel kinases (PK220, PK200, PK170, PK150, PK64, PK60, PK56, PK52, PK48, and PK40) were found to possess markedly increased in vitro activity when isolated from thrombin-stimulated platelets, presumably as a result of thrombin-stimulated covalent modification. Treatment of intact platelets with the calcium ionophore ionomycin and phorbol 12-myristate 13-acetate also increased the in vitro activity of these kinases. The agonist-stimulated kinases could be divided into three classes: 1) one kinase whose activity was increased by in vivo phorbol ester treatment but not by ionomycin (PK150); 2) two kinases whose activity was increased by ionomycin but not phorbol ester (PK48 and PK40); 3) seven kinases whose activity was markedly increased by combinations of phorbol ester and ionomycin, but not by either agent alone (PK220, PK200, PK170, PK64, PK60, PK56, and PK52). This third mode of regulation is what would be expected of enzymes that mediate the biological effects of inositide-mobilizing stimuli.  相似文献   

19.
The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, blood-brain barrier and water solubility). AVAILABILITY: http://www.pkdb.ifsc.usp.br  相似文献   

20.
Although there are currently more than 30 antibody-drug conjugates (ADC) in clinical development for the treatment of blood cancers and solid tumors, comparison of their clinical pharmacokinetics (PK) is challenging because of the large number of, and differences between, the targets, ADC constructs, dosing regimens, and patient populations. In this review, we standardized the evaluation, using non-compartmental PK data reported at Cycle 1, i.e., following the first drug administration of what is usually a repeated-dose treatment, in monotherapy. We report ADC clinical PK properties, dosing regimen, determination of doses ranges and associated maximum tolerated doses. We also evaluated the effect of structural characteristics and target types (hematological vs. solid tumors) on PK. In addition, we discuss how integration of PK/pharmacodynamics approaches on top of classical dose escalation in first-in-human studies may improve dosing regimen determination for subsequent phases of clinical development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号