首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21–q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci in Finnish, Danish and French T1D families.

Methods and Results

We performed a genome-wide linkage study using 384 microsatellite markers. A total of 175 T1D families were studied, of which 94 originated from Finland, 46 from Denmark and 35 from France. The whole sample set consisted of 556 individuals including 42 sib-pairs concordant and 84 sib-pairs discordant for DN. Two-point and multi-point non-parametric linkage analyses were performed using the Analyze package and the MERLIN software. A novel DN locus on 22q11 was identified in the joint analysis of the Finnish, Danish and French families by genome-wide multipoint non-parametric linkage analysis using the Kong and Cox linear model (NPLpairs LOD score 3.58). Nominal or suggestive evidence of linkage to this locus was also detected when the three populations were analyzed separately. Suggestive evidence of linkage was found to six additional loci in the Finnish and French sample sets.

Conclusions

This study identified a novel DN locus at chromosome 22q11 with significant evidence of linkage to DN. Our results suggest that this locus may be of importance in European populations. In addition, this study supports previously indicated DN loci on 3q21–q25 and 19q13.  相似文献   

2.

Background

As schizophrenia is genetically and phenotypically heterogeneous, targeting genetically informative phenotypes may help identify greater linkage signals. The aim of the study is to evaluate the genetic linkage evidence for schizophrenia in subsets of families with earlier age at onset or greater neurocognitive deficits.

Methods

Patients with schizophrenia (n  =  1,207) and their first-degree relatives (n  =  1,035) from 557 families with schizophrenia were recruited from six data collection field research centers throughout Taiwan. Subjects completed a face-to-face semi-structured interview, the Continuous Performance Test (CPT), the Wisconsin Card Sorting Test, and were genotyped with 386 microsatellite markers across the genome.

Results

A maximum nonparametric logarithm of odds (LOD) score of 4.17 at 2q22.1 was found in 295 families ranked by increasing age at onset, which had significant increases in the maximum LOD score compared with those obtained in initial linkage analyses using all available families. Based on this subset, a further subsetting by false alarm rate on the undegraded and degraded CPT obtained further increase in the nested subset-based LOD on 2q22.1, with a score of 7.36 in 228 families and 7.71 in 243 families, respectively.

Conclusion

We found possible evidence of linkage on chromosome 2q22.1 in families of schizophrenia patients with more CPT false alarm rates nested within the families with younger age at onset. These results highlight the importance of incorporating genetically informative phenotypes in unraveling the complex genetics of schizophrenia.  相似文献   

3.

Background

Reading disability (RD) is a common neurodevelopmental disorder with genetic basis established in families segregating “pure” dyslexia. RD commonly occurs in neurodevelopmental disorders including Rolandic Epilepsy (RE), a complex genetic disorder. We performed genomewide linkage analysis of RD in RE families, testing the hypotheses that RD in RE families is genetically heterogenenous to pure dyslexia, and shares genetic influences with other sub-phenotypes of RE.

Methods

We initially performed genome-wide linkage analysis using 1000 STR markers in 38 US families ascertained through a RE proband; most of these families were multiplex for RD. We analyzed the data by two-point and multipoint parametric LOD score methods. We then confirmed the linkage evidence in a second US dataset of 20 RE families. We also resequenced the SEMA3C gene at the 7q21 linkage locus in members of one multiplex RE/RD pedigree and the DISC1 gene in affected pedigrees at the 1q42 locus.

Results

In the discovery dataset there was suggestive evidence of linkage for RD to chromosome 7q21 (two-point LOD score 3.05, multipoint LOD 3.08) and at 1q42 (two-point LOD 2.87, multipoint LOD 3.03). Much of the linkage evidence at 7q21 derived from families of French-Canadian origin, whereas the linkage evidence at 1q42 was well distributed across all the families. There was little evidence for linkage at known dyslexia loci. Combining the discovery and confirmation datasets increased the evidence at 1q42 (two-point LOD = 3.49, multipoint HLOD = 4.70), but decreased evidence at 7q21 (two-point LOD = 2.28, multipoint HLOD  = 1.81), possibly because the replication sample did not have French Canadian representation.

Discussion

Reading disability in rolandic epilepsy has a genetic basis and may be influenced by loci at 1q42 and, in some populations, at 7q21; there is little evidence of a role for known DYX loci discovered in “pure” dyslexia pedigrees. 1q42 and 7q21 are candidate novel dyslexia loci.  相似文献   

4.

BACKGROUND:

Recombination (crossing over) may generate novel haplotypes that can be beneficial to a population against recently introduced pathogens. It may lead to the generation of new alleles.

SETTINGS AND DESIGN:

A prospective study at a tertiary care centre.

AIM:

To report two rare cases of crossing over in HLA region.

MATERIALS AND METHODS:

Tissue-typing was done by sequence specific primers (SSP) for DR locus and by both SSP and serology for Class I which was reconfirmed on fresh samples.

RESULTS:

In one patient crossing over had taken place in the region of A locus resulting in inheritance of A*01 instead of expected A*11. In second family crossing over had taken place in region of DRB1 locus and the sibling inherited DRB1*08 instead of DRB1*10.

CONCLUSIONS:

Possibility of recombination must be considered when interpreting implausible tissue-typing results of families worked up for BMT.  相似文献   

5.

BACKGROUND AND OBJECTIVE:

Genetic locus linked to chromosome 19p for Adolescent idiopathic scoliosis (AIS) has been described. This study was carried out with the aim to find any significant linkage or association between three microsatellite markers (D19S216, D19S894, and DS1034) of chromosome 19p13.3 in Saudi Arabian girls with AIS.

MATERIALS AND METHODS:

In eleven unrelated Saudi Arabian girls who were treated for AIS with Cobb angle of ≥30 degrees and in 10 unrelated healthy individuals, linkage analysis was performed using parametric and nonparametric methods by use of GENEHUNTER version 2.1. Multipoint linkage analysis was used in specifying an autosomal dominant trait with a gene frequency of 0.01 and an estimated penetrance of 80% at the genotype and the allele level. Fisher''s exact test was used in the analysis of contingency tables for the D19S216, D19S894, and DS1034 markers.

RESULTS:

The analysis between the patient group and healthy girls showed that at genotypic level there was no significant association of the markers and scoliosis D19S216 (P = 0.21), D19S894 (P = 0.37), and DS1034 (P = 0.25). Whereas, at the allele level, there was statistically significant association between the marker DS1034 (P = 0.008) and no significant association with the other two markers D19S216 (P = 0.25) and D19S894 (P = 0.17).

CONCLUSIONS:

Our study shows that at genotypic level none of the markers reported earlier were associated with scoliosis but at allele level, marker DS1034 was significantly associated with patients with AIS. This allele marker on chromosome 19p appears important in the etiology of AIS.  相似文献   

6.

Background

We analyzed 143 pedigrees (364 nuclear families) in the Collaborative Study on the Genetics of Alcoholism (COGA) data provided to the participants in the Genetic Analysis Workshop 14 (GAW14) with the goal of comparing results obtained from genome linkage analysis using microsatellite and with results obtained using SNP markers for two measures of alcoholism (maximum number of drinks -MAXDRINK and an electrophysiological measure from EEG -TTTH1). First, we constructed haplotype blocks by using the entire set of single-nucleotide polymorphisms (SNP) in chromosomes 1, 4, and 7. These chromosomes have shown linkage signals for MAXDRINK or EEG-TTTH1 in previous reports. Second, we randomly selected one, two, three, four, and five SNPs from each block (referred to as Rep1 – Rep5, respectively) to conduct linkage analysis using variance component approach. Finally, results of all SNP analyses were compared with those obtained using microsatellite markers.

Results

The LOD scores obtained from SNPs were slightly higher but the curves were not radically different from those obtained from microsatellite analyses. The peaks of linkage regions from SNP sets were slightly shifted to the left when compared to those from microsatellite markers. The reduced sets of SNPs provide signals in the same linkage regions but with a smaller LOD score suggesting a significant impact of the decrease in information content on linkage results. The widths of 1 LOD support interval of linkage regions from SNP sets were smaller when compared to those of microsatellite markers. However, two linkage regions obtained from the microsatellite linkage analysis on chromosome 7 for LOG of TTTH1 were not detected in the SNP based analyses.

Conclusion

The linkage results from SNPs showed narrower linkage regions and slightly higher LOD scores when compared to those of microsatellite markers. The different builds of the genetic maps used in microsatellite and SNPs markers or/and errors in genotyping may account for the microsatellite linkage signals on chromosome 7 that were not identified using SNPs. Also, unresolved map issues between SNPs and microsatellite markers may be partly responsible for the shifted linkage peaks when comparing the two types of markers.
  相似文献   

7.

Background

Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population.

Methodology/Principal Findings

To map the loci conferring a survival advantage, we performed the second genomewide linkage scan on human longevity and the first using a high-density marker panel of single nucleotide polymorphisms. By systematically testing a range of minimum age cutoffs in 279 families with multiple long-lived siblings, we identified a locus on chromosome 3p24-22 with a genomewide significant allele-sharing LOD score of 4.02 (empirical P = 0.037) and a locus on chromosome 9q31-34 with a highly suggestive LOD score of 3.89 (empirical P = 0.054). The empirical P value for the combined result was 0.002. A third novel locus with a LOD score of 4.05 on chromosome 12q24 was detected in a subset of the data, and we also obtained modest evidence for a previously reported interval on chromosome 4q22-25.

Conclusions/Significance

Our linkage data should facilitate the discovery of both common and rare variants that determine genetic variability in lifespan.  相似文献   

8.
In a recent genome-wide linkage (GWL) analysis of Finnish families at high risk for prostate cancer, we found two novel putative susceptibility loci at 3p25-p26 and 11q14. Here, we report the fine-mapping of these two critical regions at high resolution with 39 microsatellite markers in 16 families, including multiplex families that were not used in the GWL scan. The maximum multipoint HLOD was 3.39 at 3p26 and 1.42 at 11q14. The highest LOD scores were seen around markers D3S1270 and D3S4559 (=0.89), covering approximately two megabases. The two known genes in this region CHL1 (cell adhesion molecule with homology to L1CAM) and CNTN6 (contactin 6) were screened for exonic mutations in the families showing the strongest linkage, but no disease-segregating sequence variants were observed. The recombination map pointed to a region proximal to the area of best linkage, suggesting that more genes may need to be investigated as candidates. These results provide strong evidence for the existence of a prostate cancer susceptibility gene at 3p26 in Finnish prostate cancer families. This locus has not been strongly linked with hereditary prostate cancer in other populations. However, the mildly positive 3p LOD scores in a recent GWL analysis of patients from the United States suggest that the locus may also be important in other populations.  相似文献   

9.

BACKGROUND:

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive condition with right ventricular myocardium being replaced by fibro-fatty tissue. The spectrum of the expression may range from benign palpitations to the most malignant sudden death. Most of the mutations identified for the condition are localized in desmosomal proteins although three other nondesmosomal genes (cardiac ryanodine receptor-2, TGF-β3, and TMEM43) have also been implicated in ARVC. Both desmosomal and nondesmosomal genes were screened in a set of patients from local population.

MATERIALS AND METHODS:

A set of 34 patients from local population were included in this study. Diagnosis was based on the criteria proposed by task force of European Society of Cardiology/International Society and Federation of Cardiology. Polymerase chain reaction-based single-strand conformation polymorphism analysis was carried out, and samples with abnormal band pattern were commercially sequenced.

RESULTS:

Screening of cardiac ryanodine receptor revealed an insertion of a base in the intronic region of exon-28 in a patient, leading to a creation of a cryptic splice site. Screening of plakohilin-2 for mutations revealed an abnormal band pattern in three patients. Two of them had similar abnormal band pattern for exon-3.1. Sequencing revealed a novel 2 base pair deletion (433_434 delCT), which would lead to premature truncation of the protein (L145EfsX8). Another patient showed abnormal band pattern for exon-3.2 and sequencing revealed a missense mutation C792T leading to amino acid change P244L, in N-terminal, and this substitution may cause disturbances in the various protein–protein interactions.

CONCLUSION:

This study reports novel cardiac ryanodine receptor (RyR-2) mutations and Pkp-2 for the first time from Indian population.  相似文献   

10.

CONTEXT:

Survivors of the Bhopal gas disaster still suffer from various respiratory ailments. We examined the effects of exposures among a cross-section of current residents suffering from COPD by ISSR-PCR.

AIMS:

Molecular screening of the gas-affected population of Bhopal with COPD for microsatellite instability due to exposure of MIC.

SETTINGS AND DESIGN:

The isocyanate-exposed population of Bhopal city suffering from chronic obstructive pulmonary disorder.

MATERIALS AND METHODS:

Inter-(SSR) analysis was used to characterize microsatellite instability in 52 MIC victims of Bhopal, suffering from COPD using (CA)8RG and (CA)8R[Y-Q] primer.

STATISTICAL ANALYSIS USED:

Association analyses were performed using regression analysis.

RESULTS:

The study on the MIC-affected population in Bhopal showed weak association between microsatellite instability and age (r = + 0.37); exposure distance from site (r = −0.44); and smoking status(r = + 0.12); while regression analysis of the above parameters displayed supporting evidence.

CONCLUSIONS:

The high prevalence of smoking coupled with aging and poor living habits threatens, to further increase COPD incidences among this population, highlighting the need for enhanced screening efforts.  相似文献   

11.

MATERIALS AND METHODS:

The genetic diversity and forensic parameters based on 15 autosomal short tandem repeats (STR) loci; D8S1179,D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317,D16S539, D2S1338, D19S433, vWA, TPOX, D18S51,D5S818, and FGA in AmpFLSTR® Identifiler™ kit from Applied Biosystems, Foster City, CA, USA were evaluated in saliva samples of 297 unrelated individuals from the Bhil Tribe population of Gujarat state, India to study genetic diversities and relatedness of this population with other national and international populations.

RESULTS:

Statistical analysis of the data revealed all loci were within Hardy-Weinberg Equilibrium expectations with the exception of the locus vWA (0.019) and locus D18S51 (0.016). The neighbour joining phylogeny tree and Principal Co-ordinate Analysis plot constructed based on Fst distances from autosomal STRs allele frequencies of the present study and other national as well as international populations show clustering of all the South Asian populations in one branch of the tree, while Middle Eastern and African populations cluster in a separate branch.

CONCLUSION:

Our findings reveal strong genetic affinities seen between the Indo-European (IE) speaking Bhil Tribe of Gujarat and Dravidian groups of South India.  相似文献   

12.

BACKGROUND:

Hearing disorders represent a significant health problem worldwide. Recessive inherited cases of the deafness are more prevalent in Pakistan due to consanguineous marriages. Deafness caused by DFNB3 is due to mutation in the gene MYO XVA and its prevalence among Pakistani population is about 5%.

MATERIALS AND METHODS:

Families with at least two or more individual affected with deafness were selected from different areas of District Okara of Pakistan. Six consanguineous families of different ethnic groups having deaf individuals were studied. All these families had three or more deaf individuals in either two or more sib ships. Family history was taken to minimize the chances of other abnormalities. Pedigrees drawn by using Cyrillic software (version 2.1) showed that all the marriages were consanguineous and the families have recessive mode of inheritance. Three STR markers were selected and amplified on all the samples of six families through PCR. The PCR products were then genotyped on non denaturing polyacrylamide gel electrophoresis (PAGE). Haplotypes were constructed to determine the pattern of inheritance and also to determine whether a family was linked or unlinked with known DFNB3 locus.

RESULTS:

One out of six families showed linkage to the DFNB3 while rest of the families remained unlinked. Carriers of deafness genes were identified and information was provided to the families on request.

CONCLUSION:

Knowledge about the genetic causes of deafness provide insight into the variable expression of genes involved in this hereditary problem and may allow the prediction and prevention of associated health problems.  相似文献   

13.

Background

Bacterial non-necrotizing erysipelas and cellulitis are often recurring, diffusely spreading infections of the skin and subcutaneous tissues caused most commonly by streptococci. Host genetic factors influence infection susceptibility but no extensive studies on the genetic determinants of human erysipelas exist.

Methods

We performed genome-wide linkage with the 10,000 variant Human Mapping Array (HMA10K) array on 52 Finnish families with multiple erysipelas cases followed by microsatellite fine mapping of suggestive linkage peaks. A scan with the HMA250K array was subsequently performed with a subset of cases and controls.

Results

Significant linkage was found at 9q34 (nonparametric multipoint linkage score (NPLall) 3.84, p = 0.026), which is syntenic to a quantitative trait locus for susceptibility to group A streptococci infections on chromosome 2 in mouse. Sequencing of candidate genes in the 9q34 region did not conclusively associate any to erysipelas/cellulitis susceptibility. Suggestive linkage (NPLall>3.0) was found at three loci: 3q22-24, 21q22, and 22q13. A subsequent denser genome scan with the HMA250K array supported the 3q22 locus, in which several SNPs in the promoter of AGTR1 (Angiotensin II receptor type I) suggestively associated with erysipelas/cellulitis susceptibility.

Conclusions

Specific host genetic factors may cause erysipelas/cellulitis susceptibility in humans.  相似文献   

14.

Background

It is well known that genetic components play an important role in the etiology of mandibular prognathism, but few susceptibility loci have been mapped.

Methodology

In order to identify linkage regions for mandibular prognathism, we analyzed two Chinese pedigrees with 6,090 genome-wide single-nucleotide polymorphism (SNP) markers from Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM). Multipoint parametric and non-parametric (model-free) linkage analyses were used for the pedigrees.

Principal Finding

The most statistically significant linkage results were with markers on chromosome 4 (LOD  = 3.166 and NPL = 3.65 with rs 875864, 4p16.1, 8.38 cM). Candidate genes within the 4p16.1 include EVC, EVC2.

Conclusion

We detected a novel suggestive linkage locus for mandibular prognathism in two Chinese pedigrees, and this linkage region provides target for susceptibility gene identification, a process that will provide important insights into the molecular and cellular basis of mandibular prognathism.  相似文献   

15.

Background

Pedigree studies of complex heritable diseases often feature nominal or ordinal phenotypic measurements and missing genetic marker or phenotype data.

Methodology

We have developed a Bayesian method for Linkage analysis of Ordinal and Categorical traits (LOCate) that can analyze complex genealogical structure for family groups and incorporate missing data. LOCate uses a Gibbs sampling approach to assess linkage, incorporating a simulated tempering algorithm for fast mixing. While our treatment is Bayesian, we develop a LOD (log of odds) score estimator for assessing linkage from Gibbs sampling that is highly accurate for simulated data. LOCate is applicable to linkage analysis for ordinal or nominal traits, a versatility which we demonstrate by analyzing simulated data with a nominal trait, on which LOCate outperforms LOT, an existing method which is designed for ordinal traits. We additionally demonstrate our method''s versatility by analyzing a candidate locus (D2S1788) for panic disorder in humans, in a dataset with a large amount of missing data, which LOT was unable to handle.

Conclusion

LOCate''s accuracy and applicability to both ordinal and nominal traits will prove useful to researchers interested in mapping loci for categorical traits.  相似文献   

16.

Background

For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.

Method

We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.

Results

Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).

Discussion

With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect.  相似文献   

17.

Background

Frontotemporal lobar degeneration (FTLD) represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND). The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND.

Methods

Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing.

Results

Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree.

Conclusion

Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease haplotype, highlights the possibility that late-onset AD patients in the other linked pedigrees may be mis-classified as sporadic dementia cases.  相似文献   

18.
19.

Background

The feasibility of effectively analyzing high-density single nucleotide polymorphism (SNP) maps in whole genome scans of complex traits is not known. The purpose of this study was to compare variance components linkage results using different density marker maps in data from the Collaborative Study on the Genetics of Alcoholism (COGA). Marker maps having an average spacing of 10 cM (microsatellite), 0.78 cM (SNP1), and 0.31 cM (SNP2) were used to identify quantitative trait loci (QTLs) affecting maximum number of alcoholic drinks consumed in a 24-hour period (lnmaxalc).

Results

Heritability of lnmaxalc was estimated to be 15%. Multipoint variance components linkage analysis revealed similar linkage patterns among the three marker panels, with the SNP maps consistently yielding higher LOD scores. Robust LOD scores > 1.0 were observed on chromosomes 1 and 13 for all three marker maps. Additional LODs > 1.0 were observed on chromosome 4 with both SNP maps and on chromosomes 18 and 21 with the SNP2 map. Peak LOD scores for lnmaxalc were observed on chromosome 1, although none reached genome-wide statistical significance. Quantile-quantile plots revealed that the multipoint distribution of SNP results appeared to fit the asymptotic null distribution better than the twopoint results.

Conclusion

In conclusion, variance-components linkage analysis using high-density SNP maps provided higher LOD scores compared with the standard microsatellite map, similar to studies using nonparametric linkage methods. Widespread application of SNP maps will depend on further improvements in the computational methods implemented in current software packages.
  相似文献   

20.
Tang BS  Luo W  Xia K  Xiao JF  Jiang H  Shen L  Tang JG  Zhao GH  Cai F  Pan Q  Dai HP  Yang QD  Xia JH  Evgrafov OV 《Human genetics》2004,114(6):527-533
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders with a prevalence estimated at 1/2500. The axonal form of this disorder is referred to as Charcot-Marie-Tooth type 2 disease (CMT2). Recently, a large Chinese family with CMT2 was found in the Hunan and Hubei provinces of China. The known loci for CMT1A, CMT2D, CMT1B (the same locus is also responsible for CMT2I and CMT2J), CMT2A, CMT2E, and CMT2F were excluded in this family by linkage analysis. A genome-wide screening was then carried out, and the results revealed linkage of CMT2 to a locus at chromosome 12q24. Haplotype construction and analyses localized this novel locus to a 6.8-cM interval between microsatellite markers D12S366 and D12S1611. The maximal two-point LOD score of 6.35 and multipoint LOD score of 8.08 for marker D12S76 at a recombination fraction () of 0 strongly supported linkage to this locus. Thus, CMT2 neuropathy in this family represents a novel genetic entity that we have designated as CMT2L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号