首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified.  相似文献   

2.
3.
The effect of low concentrations of cyanide on dissimilatory perchlorate and chlorate reduction and aerobic respiration was examined using pure cultures of Azospira sp. KJ. Cyanide at a concentration of 38 microM inhibited cell growth on perchlorate, chlorate and molecular oxygen, but it did not inhibit the activity of chlorite dismutase. When oxygen accumulation was prevented by adding an oxygen scavenger (Oxyrase or L-cysteine), however, cells completely reduced perchlorate in the presence of cyanide. It was concluded that the inhibition of dissimilative perchlorate reduction by cyanide at this concentration was a consequence of oxygen accumulation, not inhibition of the enzymes used for perchlorate reduction. This finding on the effect of cyanide on respiratory enzymes provides a new method to control and study respiratory enzymes used for perchlorate reduction.  相似文献   

4.
A quantitative real-time PCR assay targeting the pcrA gene, encoding the catalytic subunit of perchlorate reductase, detected pcrA genes from perchlorate-reducing bacteria in three different genera and from soil microbial communities. Partial pcrA sequences indicated differences in the composition of perchlorate-reducing bacterial communities following exposure to different electron donors.  相似文献   

5.
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter(-1) were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

6.
A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation.  相似文献   

7.
AIMS: To determine the mathematical kinetic rates and mechanisms of acclimated perchlorate (ClO)-reducing microbial cultures by incorporating a term to relate the inhibitory effect of high salinity during biological reduction of concentrated perchlorate solutions. METHODS AND RESULTS: Salt toxicity associated with the biodegradation of concentrated perchlorate (200, 500, 1100, 1700 and 2400 mg l(-1) as ClO) was investigated using two microbial cultures isolated from a domestic wastewater treatment plant [return activated sludge (RAS) and anaerobic digester sludge (ADS)]. Experiments were performed in wastewaters containing various sodium chloride concentrations, ranging from 0% to 4.0% (w/v) NaCl (ionic strength: 0.14-0.82 mol l(-1), total dissolved solids: 5.3-42.6 g l(-1)) at near-neutral values of pH (6.7-7.8). Perchlorate biodegradation was stimulated through stepwise acclimation to high salinity. The ADS culture was capable of reducing perchlorate at salinities up to 4% NaCl, while the RAS culture exhibited complete inhibition of perchlorate degradation at 4% NaCl, probably resulting from either a toxic effect or enzyme inactivation of the perchlorate-reducing microbes. Further, a kinetic growth model was developed based on experimental data in order to express an inhibition function to relate specific growth rate and salinity. CONCLUSIONS: Biological reduction of concentrated perchlorate wastewaters using either acclimated RAS or ADS cultures is feasible up to 3% or 4% NaCl, respectively. In addition, the kinetic model including a salinity inhibition term should be effective in many practical applications such as improving reactor design and management, furthering the understanding of high salinity inhibition, and enhancing bioremediation under high salinity loading conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Applications of these findings in water treatment practice where ion exchange or membrane technologies are used to remove perchlorate from water can have the potential to increase the overall attractiveness of these processes by eliminating the need to dispose of a concentrated perchlorate solution.  相似文献   

8.
9.
Environmental Factors That Control Microbial Perchlorate Reduction   总被引:2,自引:1,他引:1       下载免费PDF全文
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter−1 were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

10.
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.  相似文献   

11.
Chlorate reductase has been isolated from the chlorate-respiring bacterium Ideonella dechloratans, and the genes encoding the enzyme have been sequenced. The enzyme is composed of three different subunits and contains molybdopterin, iron, probably in iron-sulfur clusters, and heme b. The genes (clr) encoding chlorate reductase are arranged as clrABDC, where clrA, clrB, and clrC encode the subunits and clrD encodes a specific chaperone. Judging from the subunit composition, cofactor content, and sequence comparisons, chlorate reductase belongs to class II of the dimethyl sulfoxide reductase family. The clr genes are preceded by a novel insertion sequence (transposase gene surrounded by inverted repeats), denoted ISIde1. Further upstream, we find the previously characterized gene for chlorite dismutase (cld), oriented in the opposite direction. Chlorate metabolism in I. dechloratans starts with the reduction of chlorate, which is followed by the decomposition of the resulting chlorite to chloride and molecular oxygen. The present work reveals that the genes encoding the enzymes catalyzing both these reactions are in close proximity.  相似文献   

12.
13.
Chlorite dismutase (CD) catalyzes the disproportionation of chlorite to chloride (ClO(2)(-)-->Cl(-)+O(2)) and is present in bacteria capable of cell respiration using perchlorate or chlorate. The activity of this enzyme has previously been measured by monitoring oxygen evolution using a Clark-type dissolved oxygen (DO) probe. We demonstrate here, using two other methods to measure CD activity (a chloride-specific electrode and ion chromatography (IC)) via chloride production, that the DO probe method underestimates dismutation rates. Of the three methods, the chloride probe was the easiest to use and did not require extensive sample handling or post-experimental analysis. Using the chloride electrode method, we determined whole cell rate constants (V(max)=64 U/mg DW, K(m)=0.17 mM) for the chlorate-grown suspensions of Dechlorosoma sp. strain KJ. We compared the CD activities of strain KJ at a fixed chlorite concentration (0.6 mM) to four other perchlorate respiring bacteria (PRB), and to one non-PRB (Pseudomonas aeruginosa). Chlorate-grown cultures of the five PRB strains had CD activities ranging from 25 to 50 U/mg of cell dry weight (DW), while aerobically grown cultures of the PRB had much lower CD activities (0.5-4 U/mg DW). To our knowledge, this is the first systematic comparison of the different methods to measure CD activities, and the first comparison of CD activities of different PRBs.  相似文献   

14.
Reduction of perchlorate by an anaerobic enrichment culture   总被引:2,自引:0,他引:2  
Summary A mixed bacterial culture capable of reducing perchlorate stoichiometrically to chloride under naerobic conditions was enriched from municipal digester sludge. The reduction of 10 mM perchlorate resulted in oxidation of the medium and cessation of perchlorate reduction. The activity was recovered on addition of a reducing agent. Addition of air to the culture during perchlorate reduction immediately terminated the process and aeration for 12 h permanently destroyed the ability of the culture to reduce perchlorate. The culture also reduced nitrite, nitrate, chlorite, chlorate and sulfate. The presence of 10 mM nitrite or chlorite completely inhibited perchlorate reduction, whereas the same concentration of chlorate decreased the reduction rate. Nitrate or sulfate did not affect perchlorate reduction. Chlorate and chlorite, suspected intermediates in the reduction of perchlorate to chloride, were not detected in any cultures during reduction of perchlorate.  相似文献   

15.
Previous studies have shown that herpes virus ribonucleotide reductase can be inhibited by a synthetic nonapeptide whose sequence is identical to the C-terminal of the small subunit of the enzyme. This peptide is able to interfere with normal subunit association that takes place through the C-terminal of the small subunit. In this report, we illustrate that inhibition of ribonucleotide reductases by peptides corresponding to the C-terminal of subunit R2 is also observed for the enzyme isolated from Escherichia coli, hamster, and human cells. The nonapeptide corresponding to the bacterial C-terminal sequence was found to inhibit E. coli enzyme with an IC50 of 400 microM, while this peptide had no effect on mammalian ribonucleotide reductase. A corresponding synthetic peptide derived from the C-terminal of the small subunit of the human enzyme inhibited both human and hamster ribonucleotide reductases with IC50 values of 160 and 120 microM, respectively. However, this peptide had no inhibitory activity against the bacterial enzyme. Equivalent peptides derived from herpes virus ribonucleotide reductase had no effect on either the bacterial or mammalian enzymes. Thus, subunit association at the C-terminal of the small subunit appears to be a common feature of ribonucleotide reductases. In addition, the inhibitory phenomenon observed with peptides corresponding to the C-terminal appears not only to be universal, but also specific to the primary sequence of the enzyme.  相似文献   

16.
A detailed comparison between native chlorite dismutase from Ideonella dechloratans, and the recombinant version of the protein produced in Escherichia coli, suggests the presence of a covalent modification in the native enzyme. Although the native and recombinant N- and C-terminal sequences are identical, the enzymes display different electrophoretic mobilities, and produce different peptide maps upon digestion with trypsin and separation of fragments using capillary electrophoresis. Comparison of MALDI mass spectra of tryptic peptides from the native and recombinant enzymes suggests two locations for modification in the native protein. Mass spectrometric analysis of isolated peptides from a tryptic digest of the native enzyme identifies a possible cross-linked dipeptide, suggesting an intrachain cross-link in the parent protein. Spectrophotometric titration of the native enzyme in the denatured state reveals two titrating components absorbing at 295 nm, suggesting the presence of about one tyrosine residue per subunit with an anomalously low pK(a). The EPR spectrum for the recombinant enzyme is different from that of the native enzyme, and contains a substantial contribution of a low-spin species with the characteristics of bis-histidine coordination. These results are discussed in terms of a covalent cross-link between a histidine and a tyrosine sidechain, similar to those found in other heme enzymes operating under highly oxidizing conditions.  相似文献   

17.
Recent studies have shown that perchlorate (ClO4 ) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.  相似文献   

18.
A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 μm wide and 1 to 2 μm long, are motile, and stain gram negative. Strain BC grows on benzene and some other aromatic compounds with oxygen or in the absence of oxygen with chlorate as the electron acceptor. Strain BC is a denitrifying bacterium, but it is not able to grow on benzene with nitrate. The closest cultured relative is Alicycliphilus denitrificans type strain K601, a cyclohexanol-degrading nitrate-reducing betaproteobacterium. Chlorate reductase (0.4 U/mg protein) and chlorite dismutase (5.7 U/mg protein) activities in cell extracts of strain BC were determined. Gene sequences encoding a known chlorite dismutase (cld) were not detected in strain BC by using the PCR primers described in previous studies. As physiological and biochemical data indicated that there was oxygenation of benzene during growth with chlorate, a strategy was developed to detect genes encoding monooxygenase and dioxygenase enzymes potentially involved in benzene degradation in strain BC. Using primer sets designed to amplify members of distinct evolutionary branches in the catabolic families involved in benzene biodegradation, two oxygenase genes putatively encoding the enzymes performing the initial successive monooxygenations (BC-BMOa) and the cleavage of catechol (BC-C23O) were detected. Our findings suggest that oxygen formed by dismutation of chlorite can be used to attack organic molecules by means of oxygenases, as exemplified with benzene. Thus, aerobic pathways can be employed under conditions in which no external oxygen is supplied.  相似文献   

19.
Biomarker genes of human skin-derived cells were identified by new simple bioinformatic methods and DNA microarray analysis utilizing in vitro cultures of normal neonatal human epidermal keratinocytes, melanocytes, and dermal fibroblasts. A survey of 4405 human cDNAs was performed using DermArray DNA microarrays. Biomarkers were rank ordered by "likelihood ratio" algorithms and stringent selection criteria that have general applicability for analyzing a minimum of three RNA samples. Signature biomarker genes (up-regulated in one cell type) and anti-signature biomarker genes (down-regulated in one cell type) were determined for the three major skin cell types. Many of the signature genes are known biomarkers for these cell types. In addition, 17 signature genes were identified as ESTs, and 22 anti-signature biomarkers were discovered. Quantitative RT-PCR was used to verify nine signature biomarker genes. A total of 158 biomarkers of normal human skin cells were identified, many of which may be valuable in diagnostic applications and as molecular targets for drug discovery and therapeutic intervention.  相似文献   

20.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号