首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Failure or severe difficulty in conceiving a child is surprisingly common, worldwide problem. Half of these cases are due to male factors with defects in sperm (1 in 15 men) being the single most common cause. Also about 60–75 % of male infertility cases are idiopathic, since the molecular mechanisms underlying the defects remain unknown. DNA methylation is crucial for spermatogenesis and high methylenetetrahydrofolate reductase (MTHFR) activity in adult testis than other organs in mouse, signifies its critical role in spermatogenesis. According to recent findings there is a correlation of epigenetic regulation of several imprinted genes with disturbed spermatogenesis and fertility. Consequently any change in the MTHFR gene sequence can modify the spermatogenesis including transmission of infertility to the carriers. The aim of the study is to analyze the distribution of the single nucleotide polymorphism C677T in the MTHFR gene in 637 North Indian infertile patients and 364 fertile North Indian men as controls by using PCR–RFLP technique and Chi Square test for statistical analysis. The average MTHFR 677CC, 677CT, 677TT genotype frequencies of total infertile men were 70.17, 24.17, 5.65 % in infertile men and 75.27, 21.7, 2.74 % in controls, respectively. The average frequency of the MTHFR 677T allele was 17.73 % in infertile men as compared to 13.59 % in controls. The statistical difference was significant. Disease risk was found 2.27-folds increased in patients who were carrying T allele. We found an association of C677T polymorphism with male infertility and that it may be a genetic risk factor for male infertility in North Indian population.  相似文献   

2.
The cervicovaginal and endometrial isolation rates of Ureaplasma urealyticum and Mycoplasma hominis and relevant demographic data were obtained at the time of laparoscopy in 193 women from infertile marriage. For comparative purposes, fertile women undergoing laparoscopy for tubal ligation (n = 56) or other purposes (n = 64) were also cultured. Blacks were more likely than caucasians to be infected with either organism in all population types (p less than or equal to .05); however, no differences were noted in cervicovaginal carriage rates for blacks in different patient populations. M. hominis was isolated more frequently from tubal reanastomosis patients and less often from infertile patients, p less than or equal to .001. No differences were noted among the infertile subpopulations. Although the isolation rate of U. urealyticum from the different patient populations was similar, one subpopulation within the infertile population (male factor) was identified in which the prevalence of ureaplasmal infection of the female's lower genital tract was over twice as high (p less than or equal to .005) as in other infertile women. Yet there were no statistically significant differences in the demographic data of this subpopulation as compared to the population of infertile women as a whole. No other clinical subpopulation with single or multiple diagnoses not including male factor had an increased prevalence of infection. Eighty percent of infected, infertile couples had no clinical evidence of male factor infertility, indicating that only certain individuals are affected.This possibly explains why previous studies involving small numbers of patients without regard to clinical subpopulations have failed to show significant differences between infected and uninfected couples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The loss of traits that no longer increase fitness is a pervasive feature of evolution, although detailed studies of the genetic, developmental, and evolutionary factors involved are few. Most perennial plants practice both sexual and clonal reproduction, and it has been hypothesized that populations with little sexual recruitment may lose the capacity for sexual reproduction by fixing mutations that disable one or more of the many processes involved in sex. The clonal, tristylous aquatic plant, Decodon verticillatus, exhibits marked geographical variation in sexual recruitment. Populations at the northern limit of the range are usually monomorphic for style length consist of single genotypes, and produce almost no seed, due, in part, to environmental conditions that inhibit pollination, fertilization, and seed maturation. Controlled crosses in a greenhouse provided evidence for greatly reduced sexual capacity in an exclusively clonal, monomorphic population. Plants from this infertile population produced only 3–18% as many seeds per pollination as fertile populations. Observations of pollen tube growth indicated that infertility is due to severe reductions in pollen tube numbers both early after pollination and later when pollen tubes were traversing the ovary, due primarily to the inability of pistils to support normal tube growth. A three-year greenhouse experiment comparing fertility, survival, and growth of F1 progenies produced from reciprocal crosses between plants from the infertile population and those from nearby fertile populations suggested that the genetic basis for infertility is simple and may involve a single recessive mutation. In addition, the results did not reveal any association between infertility and other aspects of survival and vegetative vigor. The infertile genotype was likely fixed in the population through founder effect rather than indirect selection resulting from antagonistic pleiotropy or direct selection of advantages associated with reduced investment in sexual reproduction. A broader comparison of sexual fertility in 15 clonal, monomorphic populations and five genotypically diverse, trimorphic populations under greenhouse conditions revealed substantial infertility in all but one monomorphic population. Populations varied somewhat in the stage at which infertility was expressed, however, pollen tube growth was impaired in all populations. These results provide strong support for the hypothesis that complex traits like sex are degraded by mutation when they no longer increase fitness.  相似文献   

4.
Song SH  Shim SH  Bang JK  Park JE  Sung SR  Cha DH 《Gene》2012,506(1):248-252
Male factor infertility is present in up to 50% of infertile couples, making it increasingly important in their treatment. Although most research into the genetics of male infertility has focused on the Y chromosome, male factor infertility may result from other genetic factors. We utilized the whole genome array comparative genomic hybridization (CGH) to identify novel genetic candidate associated with severely impaired spermatogenesis. We enrolled 37 patients with severe male factor infertility, defined as severe nonobstructive type oligozoospermia (≤5×10(6)/ml) or azoospermia, and 10 controls. Routine cytogenetic analyses, Yq microdeletion PCR test and whole genome bacterial artificial chromosome (BAC)-array CGH were performed. Array CGH results showed no specific gains or losses related to impaired spermatogenesis other than Yq microdeletions, and there were no novel candidate genetic abnormalities in the patients with severe male infertility. However, Yq microdeletions were detected in 10 patients. Three showed a deletion in the AZFb-c region and the other 7 had deletions in the AZFc region. Although we could not identify novel genetic regions specifically associated with male infertility, whole genome array CGH analysis with higher resolution including larger numbers of patients may be able to give an opportunity for identifying new genetic markers for male infertility.  相似文献   

5.
The spermatogenesis locus azoospermia factor (AZF) in Yq11 has been delineated into three microdeletion intervals designated as AZFa, AZFb andAZFc. AZFc is the most frequently deleted region. We have studied 270 male infertile patients for various genetic disorders associated with infertile phenotype. In this study, we have presented results of our studies on Y-chromosome deletions, chromosomal abnormalities (Klinefelter syndrome) and histology of testis with the objective of seeing whether there were cases of gonosomic mosaicism and a causal correlation between the genetic disorder; and testicular aetiology could be drawn. In all the 13 cases of Y-chromosome microdeletion, AZFc region and DAZ gene were deleted, while no case of AZFa deletion was detected. This result was at variance with other reports from India, where a considerable fraction of cases showed deletion in AZFa region of the Y-chromosome. Both Y-deleted and non-Y-deleted cases revealed heterogeneous testicular phenotype with comparable severity. This disparity among testicular phenotype in cases with known genetic aetiology and even in cases of unknown aetiology can be attributed to different genetic backgrounds and effect of modifiers. Since male infertility is a multifactorial disorder, the contributions of environmental and occupational insults may not be underestimated.  相似文献   

6.
Male infertility is the cause in half of all childless partnerships. Numerous factors contribute to male infertility, including chromosomal aberrations and gene defects. Few data exist regarding the association of these chromosomal aberrations with male infertility in Arab and North African populations. We therefore aimed to evaluate the frequency of chromosomal aberrations in a sample of 476 infertile men with non-obstructive azoospermia (n = 328) or severe oligozoospermia (n = 148) referred for routine cytogenetic analysis to the department of cytogenetics of the Pasteur Institute of Tunis. The overall incidence of chromosomal abnormalities was about 10.9%. Out of the 52 patients with abnormal cytogenetic findings, sex chromosome abnormalities were observed in 42 (80.7%) including Klinefelter syndrome in 37 (71%). Structural chromosome abnormalities involving autosomes (19.2%) and sex chromosomes were detected in 11 infertile men. Abnormal findings were more prevalent in the azoospermia group (14.02%) than in the severe oligozoospermia group (4.05%). The high frequency of chromosomal alterations in our series highlights the need for efficient genetic testing in infertile men, as results may help to determine the prognosis, as well as the choice of an assisted reproduction technique. Moreover, a genetic investigation could minimize the risk of transmitting genetic abnormalities to future generations.  相似文献   

7.
15% of couples worldwide present with reproduction difficulties related to infertility. To date, very few genetic causes have been associated with male or female infertility. The identification of single-gene mutations causing male infertility is not a field of intense research at the present time, although they are probably responsible for a large number of so-called idiopathic cases of infertility. Murine models were created several years ago by gene knock-out by genetic recombination: more than 200 genes have been shown to be responsible for isolated syndromic infertility. This is the case for genes controlling meiosis. The course of meiosis and the genes associated with this process have been largely characterized in yeasts. Mammalian homologues were recently cloned and knocked out in mice, demonstrating their essential roles during meiosis and gametogenesis. The gonadal phenotype of these mutant animals is similar to that of certain patients with unexplained infertility. The search for possible mutations in meiosis genes, genes that have been highly preserved during evolution, is currently underway. These murine models are very useful to study and dissect the various steps of normal and pathological gametogenesis in mammals. This progress should lead, in the near future, to more precise diagnosis and therefore informed genetic counselling in these infertile couples.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal development and reproductive action. Abnormal expression of BDNF gene has been detected in human sperm and seminal serum. In the present study, we investigated the possible association of G196A and C270T polymorphism of BDNF gene with male infertility. The genotypes of the G196A and C270T polymorphisms were in Hardy-Weinberg equilibrium both in fertile and infertile group. The genotype distribution frequencies were similar between infertile and fertile group. The results showed that the G196A and C270T polymorphism of the BDNF gene is unrelated to the male infertility, at least in a Chinese population.  相似文献   

9.
Infertility affects 15% couples attempting pregnancy and in 40–50% of these cases the male partner has qualitative or quantitative abnormalities of sperm production. Microdeletions in the azoospermia factor (AZF) region on the long arm of the Y chromosome are known to be associated with spermatogenic failure and have been used to define three regions on Yq (AZFa, AZFb and AZFc) which are critical for spermatogenesis and are recurrently deleted in infertile males. Semen analysis was carried out on one hundred and twenty five infertile males with oligozoospermia and azoospermia. Cytogenetic analysis was done for all the cases and in all cytogenetically normal cases (n = 83) microdeletion analysis was carried out on DNA extracted from peripheral blood using PCR. The sequence tagged sites (STS) primers sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc) were used for each case. Eight of the eighty three cases (9.63%) showed deletion of at least one of the STS markers. Correlation of phenotype with microdeletion was done in each case to determine any phenotype association with deletion of particular AZF locus. Based on the present study, the frequency of microdeletion in the Indian population is 9.63%. This study emphasizes the need for PCR analysis for determining genetic aetiology in cases with idiopathic severe testiculopathy.  相似文献   

10.
Li Ch  Zheng L  Sun Y  Wang Ch  Li W  Lu Ch  Zhou X 《Genetika》2012,48(3):405-407
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal development and reproductive action. Abnormal expression of BDNF gene has been detected in human sperm and seminal serum. In the present study, we investigated the possible association of G196A and C270T polymorphism of BDNF gene with male infertility. The genotypes of the G196A and C270T polymorphisms were in Hardy-Weinberg equilibrium both in fertile and infertile group. The genotype distribution frequencies were similar between infertile and fertile group. The results showed that the G196A and C270T polymorphism of the BDNF gene is unrelated to the male infertility, at least in a Chinese population.  相似文献   

11.
In recent years the incidence of male infertility has increased. Many risk factors have been taken into consideration, including viral infections. Investigations into viral agents and male infertility have mainly been focused on human papillomaviruses, while no reports have been published on polyomaviruses and male infertility. The aim of this study was to verify whether JC virus and BK virus are associated with male infertility. Matched semen and urine samples from 106 infertile males and 100 fertile males, as controls, were analyzed. Specific PCR analyses were carried out to detect and quantify large T (Tag) coding sequences of JCV and BKV. DNA sequencing, carried out in Tag JCV-positive samples, was addressed to viral protein 1 (VP1) coding sequences. The prevalence of JCV Tag sequences in semen and urine samples from infertile males was 34% (72/212), whereas the BKV prevalence was 0.94% (2/212). Specifically, JCV Tag sequences were detected in 24.5% (26/106) of semen and 43.4% (46/106) of urine samples from infertile men. In semen and urine samples from controls the prevalence was 11% and 28%, respectively. A statistically significant difference (p<0.05) in JCV prevalence was disclosed in semen and urine samples of cases vs. controls. A higher JC viral DNA load was detected in samples from infertile males than in controls. In samples from infertile males the JC virus type 2 strain, subtype 2b, was more prevalent than ubiquitous type 1. JCV type 2 strain infection has been found to be associated with male infertility. These data suggest that the JC virus should be taken into consideration as an infectious agent which is responsible for male infertility.  相似文献   

12.
非梗阻性无精子症(non-obstructive azoospermia,NOA)是导致男性不育的重要原因,影响着约0.6%的男性或10%的不育男性.NOA是一种由多因素引起的具有高度遗传异质性和表型异质性的复杂疾病,其中遗传学病因包括染色体异常、Y染色体微缺失、基因突变以及表观遗传修饰等.目前临床上针对NOA患者的遗传学检测,还仅限于结合附睾和睾丸穿刺活检的核型分析及Y染色体微缺失检测,而且一直缺乏理想的治疗方案.因此,深入解析NOA的具体分子机理,对阐明NOA的病因、提高男性不育的临床诊断和治疗具有重要意义.本综述将从NOA的遗传学基础、NOA的病理特征、临床诊断及治疗等方面进行系统的探讨.  相似文献   

13.

Background

Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate and methionine metabolism, making it crucial for DNA synthesis and methylation. The objective of this study was to analyze MTHFR gene 677C>T polymorphism in infertile male individuals from North India, followed by a meta-analysis on our data and published studies.

Methodology/Principal Findings

We undertook genotyping on a total of 837 individuals including well characterized infertile (N = 522) and confirmed fertile (N = 315) individuals. The SNP was typed by direct DNA sequencing. Chi square test was done for statistical analysis. Published studies were searched using appropriate keywords. Source of data collection for meta-analysis included ‘Pubmed’, ‘Ovid’ and ‘Google Scholar’. Those studies analyzing 677C>T polymorphism in male infertility and presenting all relevant data were included in meta-analysis. The genotype data for infertile subjects and fertile controls was extracted from each study. Chi square test was done to obtain odds ratio (OR) and p-value. Meta-analysis was performed using Comprehensive Meta-analysis software (Version 2). The frequency of mutant (T) allele (p = 0.0025) and genotypes (CT+TT) (p = 0.0187) was significantly higher in infertile individuals in comparison to fertile controls in our case-control study. The overall summary estimate (OR) for allele and genotype meta-analysis were 1.304 (p = 0.000), 1.310 (p = 0.000), respectively, establishing significant association of 677C>T polymorphism with male infertility.

Conclusions/Significance

677C>T substitution associated strongly with male infertility in Indian population. Allele and genotype meta-analysis also supported its strong correlation with male infertility, thus establishing it as a risk factor.  相似文献   

14.
In the last few years considerable progress has been made in the study of sperm physiology and the biology of gamete interaction, furthering our understanding of the pathophysiology of male infertility. With the advent of assisted reproductive technology and intracytoplasmic sperm injection, study of the various factors leading to spermatogenic impairment has become a major focus of scientific research. Understanding the genetic factors that lead to infertility has taken on a certain urgency, as we have learned not only of the transmission to male offspring of spermatogenic impairment, but that these offspring may also be born with a secondary, larger deletion with worsening of phenotype and genital ambiguity.Ten to twenty-five percent of couples encounter difficulty procreating. Microdeletions of the long arm of the Y chromosome are associated with spermatogenic failure and have been used to define three regions on Yq (AZFa, AZFb, and AZFc) that are critical for spermatogenesis. This study was conceived in order to identify the frequency of submicroscopic interstitial deletions in azoospermia factor loci in infertile Indian males. One hundred and seventy five males with nonobstructive oligozoospermia and azoospermia were included in this study. Semen analysis was done in each case to determine the spermatogenic status-normospermic, oligozoospermic (< 20 million sperm/mL), or azoospermic (no sperm in the semen). Detailed medical, clinical, reproductive, and family histories were taken of each patient. Thirty G-banded metaphases were analyzed in each case and polymerase chain reaction microdeletion analysis was done in 133 cytogenetically normal cases. For this genomic, DNA was extracted using peripheral blood. The sequence tagged site primers tested in each case were sY84, sY86 (AZFa); sY113, sY116, sY127, sY134 (AZFb); sY254, sY255 (AZFc). Polymerase chain reaction amplifications found to be negative were repeated at least three times to confirm the deletion of a given marker. The polymerase chain reaction products were analyzed on a 1.8% agarose gel. Eight of the 133 cases showed deletion of at least one of the sequence tagged site markers. Review of the literature has shown that the overall frequency of microdeletions varies from 1% to 55%. In the present study the frequency of microdeletion was 6.01%. Deletions were detected in cases with known and unknown etiology with bilateral severe testiculopathy.  相似文献   

15.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (∼5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa+b+c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: (1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; (2) Ychromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

16.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (approximately 5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa + b + c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: 1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; 2) Y chromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

17.
Spermatogenesis is a process where an important contribution of genes involved in folate-mediated one-carbon metabolism is observed. The aim of the present study was to investigate the association between male infertility and the MTHFR (677C > T; 1298A > C), MTR (2756A > G) and MTRR (66A > G) polymorphisms in a Polish population. No significant differences in genotype or allele frequencies were detected between the groups of 284 infertile men and of 352 fertile controls. These results demonstrate that common polymorphisms in folate pathway genes are not major risk factors for non-obstructive male infertility in the Polish population.  相似文献   

18.
Infertility, defined as the inability to conceive after 1 year of unprotected intercourse, is a healthcare problem that has a worldwide impact. Male factors are involved in at least half of these cases of infertility. Despite 33 years of assisted reproductive activities, a considerable number of cases (25–30%) remain idiopathic. This situation can be explained by a poor understanding of the basic mechanisms driving male and female gametogenesis. Compared to multi-organ pathologies, only a few non-syndromic genetic causes of human infertility have been described so far, despite the fact that it is estimated that some infertility cases could be explained by genetic causes and that over 200 infertile or subfertile genetic mouse models have been described. So far, very little has been discovered in the field of human male reproductive genetics. Consequently, genetic tests proposed to infertile couples are limited, although worldwide efforts devoted to the field of human genetics of infertility are expected to provide new genetic tests in the near future. We present the requirements for performing informative genetics studies in the field of infertility, the techniques used and the results obtained so far. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

19.
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States–sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.  相似文献   

20.
Ethel Szerman 《Andrologie》2003,13(2):134-138
Intracytoplasmic sperm injection (ICSI) and testicular biopsies (TESE) have revolutionized the treatment of male infertility, introducing a risk of an increased frequency of genetic defects in the offspring. These risks and their consequences must therefore be evaluated when proposing ICSI to an infertile man. Karyotype and molecular analysis should be performed to detect any genetic defects responsible for male infertility. Y microdeletion screening is important, not only to define the aetiology of spermatogenic failure, but also to provide information allowing a more appropriate management of both the infertile male and his future male child. Genetic counselling is then advised before deciding to attempt ICSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号