首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.  相似文献   

2.
In-frame mutations in nuclear lamin A/C lead to a multitude of tissue-specific degenerative diseases known as the ‘laminopathies’. Previous studies have demonstrated that lamin A/C-null mouse fibroblasts have defects in cell polarisation, suggesting a role for lamin A/C in nucleo-cytoskeletal-cell surface cross-talk. However, this has not been examined in patient fibroblasts expressing modified forms of lamin A/C. Here, we analysed skin fibroblasts from 3 patients with Emery–Dreifuss muscular dystrophy and from 1 with dilated cardiomyopathy. The emerin–lamin A/C interaction was impaired in each mutant cell line. Mutant cells exhibited enhanced cell proliferation, collagen-dependent adhesion, larger numbers of filopodia and smaller cell spread size, compared with control cells. Furthermore, cell migration, speed and polarization were elevated. Mutant cells also showed an enhanced ability to contract collagen gels at early time points, compared with control cells. Phosphotyrosine measurements during cell spreading indicated an initial temporal lag in ERK1/2 activation in our mutant cells, followed by hyper-activation of ERK1/2 at 2 h post cell attachment. Deregulated ERK1/2 activation is linked with cardiomyopathy, cell spreading and proliferation defects. We conclude that a functional emerin–lamin A/C complex is required for cell spreading and proliferation, possibly acting through ERK1/2 signalling.  相似文献   

3.
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.  相似文献   

4.
5.
Oncogenic ras activates multiple signaling pathways to enforce cell proliferation in tumor cells. The ERK1/2 mitogen-activated protein kinase pathway is required for the transforming effects of ras, and its activation is often sufficient to convey mitogenic stimulation. However, in some settings oncogenic ras triggers a permanent cell cycle arrest with features of cellular senescence. How the Ras/ERK1/2 pathway activates different cellular programs is not well understood. Here we show that ERK1/2 localize predominantly in the cytoplasm during ras-induced senescence. This cytoplasmic localization seems to be dependent on an active nuclear export mechanism and can be rescued by the viral oncoprotein E1A. Consistent with this hypothesis, we showed that E1A dramatically down-regulated the expression of the ERK1/2 nuclear export factor PEA-15. Also, RNA interference against PEA-15 restored the nuclear localization of phospho-ERK1/2 in Ras-expressing primary murine embryo fibroblasts and stimulated their escape from senescence. Because senescence prevents the transforming effect of oncogenic ras, our results suggest a tumor suppressor function for PEA-15 that operates by means of controlling the localization of phospho-ERK1/2.  相似文献   

6.
The expression of A-type lamin is downregulated in several cancers, and lamin defects are the cause of several diseases including a form of accelerated aging. We report that depletion of lamin A/C expression in normal human cells leads to a dramatic downregulation of the Rb family of tumor suppressors and a defect in cell proliferation. Lamin A/C-depleted cells exhibited a flat morphology and accumulated markers of cellular senescence. This senescent phenotype was accompanied by engagement of the p53 tumor suppressor and induction of the p53 target gene p21 and was prevented by small hairpin RNAs against p53, p21, or by the oncoprotein Mdm2. The expression of E2F target genes, normally required for cell cycle progression, was downregulated after lamin A/C depletion but restored after the inactivation of p53. A similar senescence response was observed in myoblasts from a patient with a lamin A mutation causing muscular dystrophy. We thus reveal a previously unnoticed mechanism of controlling cell cycle genes expression, which depends on p53 but does not require the retinoblastoma family of tumor suppressors and that can be relevant to understand the pathogenesis of laminopathies and perhaps aging.  相似文献   

7.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase family of serine/threonine kinases. Little is known on the regulation of ERK3 function. Here, we report that ERK3 is constitutively localized in the cytoplasmic and nuclear compartments. In contrast to other mitogen-activated protein kinases, the cellular distribution of ERK3 remains unchanged in response to common mitogenic or stress stimuli and is independent of the enzymatic activity or phosphorylation of the kinase. The cytoplasmic localization of ERK3 is directed by a CRM1-dependent nuclear export mechanism. Treatment of cells with leptomycin B causes the nuclear accumulation of ERK3 in a high percentage of cells. Moreover, ectopic expression of CRM1 promotes the cytoplasmic relocalization of ERK3, whereas overexpression of snurportin 1, which binds CRM1 with high affinity, inhibits the nuclear export of ERK3. We also show that CRM1 binds to ERK3 in vitro. Importantly, we show that enforced localization of ERK3 in the nucleus or cytoplasm markedly attenuates the ability of the kinase to induce cell cycle arrest in fibroblasts. Our results suggest that nucleocytoplasmic shuttling of ERK3 is required for its negative regulatory effect on cell cycle progression.  相似文献   

8.
The mitogen-activated protein kinase cascade operates downstream of Ras to convey cell-surface signals to the nucleus via nuclear translocation of ERK1 and ERK2. We and others have recently demonstrated that activation of ERK1/2 by growth factors is required for proliferation of intestinal epithelial crypt cells. However, it remained to be established whether ERK1/2 activation alone was sufficient to trigger intestinal epithelial cell (IEC) proliferation. To this aim, retrovirus encoding the hemagglutinin-tagged MAPK/ERK kinase (MEK)1 wild type (wtMEK), the upstream activator of ERK1/2, or a constitutively active mutant of MEK1 (MEK1-S218D/S222D; caMEK) were used to infect nonimmortalized human normal intestinal epithelial crypt cell cultures [human intestinal epithelial cells (HIEC)] and rodent immortalized intestinal crypt cells (IEC-6). Stable expression of caMEK but not wtMEK in HIEC led to the irreversible arrest of cellular proliferation (premature senescence). Concomitant with the onset of cell-cycle arrest was the induction of the cyclin-dependent kinase inhibitors p21(Cip), p53, and p16(INK4A). By contrast, overexpression of caMEK in IEC-6 cells induced growth factor relaxation for DNA synthesis, promoted morphological transformation and growth in soft agar, and did not affect expression of p21(Cip), p53, and p16(INK4A). We provided evidences that ERK1b, an alternatively spliced isoform of ERK1, is activated and may contribute to the deregulation of contact inhibition cell growth and transformation of these cells. Constitutive activation of MEK in IECs can produce either premature senescence or forced mitogenesis depending on the integrity of a senescence program controlled by the cell cycle inhibitors p53, p16(INK4A), and p21(CIP).  相似文献   

9.
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.  相似文献   

10.
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.  相似文献   

11.
Autocrine production of insulin-like growth factor-I (IGF-I) regulates growth of human intestinal muscle cells by activation of distinct phosphatidylinositol 3-kinase (PI3-kinase)-dependent and ERK1/2-dependent pathways. The aim of the present study was to determine the mechanisms by which IGF-I regulates the G(1) phase of the cell cycle and muscle cell proliferation. Incubation of quiescent cells with IGF-I stimulated time-dependent cell cycle progression measured by using fluorescence-activated cell sorting analysis and by incorporation of [(3)H]thymidine. Studies using a microarray-based approach were used initially to identify genes expressed in human intestinal muscle encoding proteins known to participate in the G(1) phase of the cell cycle that were regulated by IGF-I. Incubation of muscle cells for 24 h with IGF-I elicited greater than fivefold increase in the expression of cyclin D1 and greater than twofold increase in retinoblastoma protein (Rb1). IGF-I elicited a time-dependent increase in cyclin D1 protein levels mediated jointly by ERK1/2-dependent and PI3-kinase-dependent mechanisms. Increase in cyclin D1 levels was accompanied by a time-dependent increase in cyclin D1-dependent cyclin-dependent kinase-4 (CDK4) activity. IGF-I also elicited a rapid time-dependent increase in Rb-(Ser807/811) phosphorylation, the specific target of the cyclin D(1)-dependent CDK4 kinase, and a slower increase in total Rb protein levels. We conclude that IGF-I stimulates G(1) phase progression, DNA synthesis, and cell proliferation of human intestinal smooth muscle cells. Effects of IGF-I on proliferation are mediated jointly by ERK1/2-dependent and PI3-kinase-dependent pathways that regulate cyclin D1 levels, CDK4 activity, and Rb activity.  相似文献   

12.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

13.
14.
15.
16.
17.
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.  相似文献   

18.
All-trans retinoic acid (atRA), one of the active ingredients of vitamin A, exerts canonical activities to regulate gene expression mediated by nuclear RA receptors (RARs). AtRA could also elicit certain non-canonical activities including, mostly, rapid activation of extracellular signal regulated kinase 1/2 (ERK1/2); but the mechanism was unclear. In this study, we have found that cellular retinoic acid binding protein I (CRABPI) mediates the non-canonical, RAR- and membrane signal-independent activation of ERK1/2 by atRA in various cellular backgrounds. In the context of embryonic stem cells (ESCs), atRA/CRABPI-dependent ERK1/2 activation rapidly affects ESC cell cycle, specifically to expand the G1 phase. This is mediated by ERK stimulation resulting in dephosphorylation of nuclear p27, which elevates nuclear p27 protein levels to block G1 progression to S phase. This is the first study to identify CRABPI as the mediator for non-canonical activation of ERK1/2 by atRA, and demonstrate a new functional role for CRABPI in modulating ESC cell cycle progression.  相似文献   

19.
Angiotensin II (AngII) type 1 receptors (AT1) regulate cell growth through the extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol 3-kinase (PI3K) pathways. ERK1/2 and Akt/protein kinase B, downstream of PI3K, are independently activated but both required for mediating AngII-induced proliferation when expressed at endogenous levels. We investigate the effect of an increase in the expression of wild-type Akt1 by using Chinese hamster ovary (CHO)-AT1 cells. Unexpectedly, Akt overexpression inhibits the AT1-mediated proliferation. This effect could be generated by a cross-talk between the PI3K and ERK1/2 pathways. A functional partner is the phosphoprotein enriched in astrocytes of 15 kDa (PEA-15), an Akt substrate known to bind ERK1/2 and to regulate their nuclear translocation. We report that Akt binds to PEA-15 and that Akt activation leads to PEA-15 stabilization, independently of PEA-15 interaction with ERK1/2. Akt cross-talk with PEA-15 does not affect ERK1/2 activation but decreases their nuclear activity as a result of the blockade of ERK1/2 nuclear accumulation. In response to AngII, PEA-15 overexpression displays the same functional consequences on ERK1/2 signaling as Akt overactivation. Thus, Akt overactivation prevents the nuclear translocation of ERK1/2 and the AngII-induced proliferation through interaction with and stabilization of endogenous PEA-15.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号