首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.  相似文献   

2.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers.  相似文献   

3.
基质辅助激光解吸电离飞行时间质谱对阪崎肠杆菌的鉴定   总被引:1,自引:0,他引:1  
目的 利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)法对阪崎肠杆菌进行鉴定,建立一种高效检测阪崎肠杆菌的方法,并为该技术的推广使用及阪崎肠杆菌的进一步研究提供科学依据.方法 用MALDI-TOF-MS法检测38株野生阪崎肠杆菌、2株标准菌株和1株阴沟肠杆菌,结果与常规生化鉴定结果对比;同时对在不同培养基上培养的阪崎肠杆菌进行质谱分析比较,对比不同培养基对质谱结果是否有影响;对38株野生菌株质谱图进行聚类分析.结果 38株菌株鉴定结果均为阪崎肠杆菌,与生化鉴定结果一致,且质谱鉴定分值大多在2.0以上.通过MALDI-TOF-MS鉴定方法可以很明显地将阴沟肠杆菌与阪崎肠杆菌两种菌分开.4种培养基对MALDI-TOF-MS鉴定结果的影响不是很明显,TSA比较适合作为阪崎肠杆菌MALDI-TOF-MS鉴定的培养基.通过质谱图谱和离子峰值比较得出,所有菌株在5745 m/z附近均出现高的离子峰,在2871、4740、8288、6260和9488 m/z附近出现离子峰的实验菌株达95%以上;在差异水平在0.5时,MALDI-TOF-MS的聚类分析结果可将所有实验菌株分成5个类型,结合菌株对应的来源和种类分析表明本研究所用菌株与来源和种类之间并无明显关系.结论 MALDI-TOF-MS方法具有准确且精确鉴定阪崎肠杆菌的能力;离子峰5745m/z具有作为阪崎肠杆菌的标记性离子峰的可能;差异水平为0.5进行MALDI-TOF-MS聚类分析,未发现5个类型与来源等具有一定关系,需要进一步研究.  相似文献   

4.
Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram-positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the results of MALDI-TOF-MS performed with samples of whole cells and with samples of crude supernatants of liquid cultures, the former samples led to more efficient bacteriocin detection and required less handling. Nisin and lacticin 481 were both detected from a mixture of their producer strains, but such a mixture can yield additional signals. We used this method to determine the masses of two lacticin 481 variants, which confirmed at the peptide level the effect of mutations in the corresponding structural gene.  相似文献   

5.
Ribonuclease (RNase) B incubated with purified enzymes, whole bacterial cultures, or their separated components-cells and supernates-have been directly analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF) to detect exomannosidases and to evaluate their specificities and location. Enzymatic cleavage was monitored by observing changes in RNase B glycoform population. Thus a nonspecific alpha-(1 --> 2)-mannosidase activity converts the glycoprotein to its Man(5) form, identifiable by its mass of 14,899 [M + H](+); this species subsequently is converted, by the actions of alpha-(1 --> 3) and alpha-(1 --> 6)-mannosidases, to the Man(1) form via Man(4), Man(3), and Man(2). The Man(1) glycoform (which is readily isolated) has then similarly been used for identifying beta-(1 --> 4)-mannosidase and the derived Man(0) form has served in turn as a natural substrate for beta-(1 --> 4) N-acetylglucosaminidase producing a species possessing a single asparagine-linked GlcNAc residue (mass 13,886). Mannose liberated from the actions of mannosidases can, if desired, be quantified by, for example, chromatography. The actions and specificities of endoglycosidases such as a peptide-N-glycosidase F (PNGase F) and of endo-N-acetlyglucosaminidases (e.g., endo-F and endo-H), which respectively cleave between the GlcNAc&bond;Asn and GlcNAc&bond;GlcNAc bonds of N-linked glycoproteins, are also demonstrable by MALDI-ToF analysis of RNase B (and derived products). From these digests the completely deglycosylated polypeptide corresponding to RNase A in which Asn has been converted to Asp (mass 13,684) and a species corresponding to RNase A + GlcNAc (mass 13,886) are produced, together with their corresponding free oligosaccharides which are amenable to analysis by both MALDI-ToF and by HPLC.  相似文献   

6.
Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.  相似文献   

7.
Staphylococcus aureus is an important human pathogen frequently resistant to a wide range of antibiotics. Methicillin-resistant S. aureus (MRSA) strains are common nosocomial pathogens that pose a world-wide problem. Rapid and accurate discrimination between methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus is essential for appropriate therapeutic management and timely intervention for infection control. We report here the application of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for monitoring the bacterial fingerprints expressed by two well characterized S. aureus strains ATCC 29213 (MSSA) and ATCC 43330 (MRSA). Consistent strain-specific data were obtained from subcultures analyzed over a period of three months as well as after changing the growth media from Mueller-Hinton to blood agar indicating the reliability of the method. The bacterial fingerprints of these two strains were compared to independent clinical isolates of S. aureus. A uniform signature profile for MRSA could not be identified. However, the bacterial fingerprints obtained proved to be specific for any given strain. This study demonstrates that MALDI-TOF MS is a powerful method for rapid identification of clonal strains of S. aureus, which might be useful for tracking nosocomial outbreaks of MRSA and for epidemiologic studies of infections diseases in general.  相似文献   

8.
In addition to protein identification, characterization of post-translational modifications (PTMs) is an essential task in proteomics. PTMs represent the major reason for the variety of protein isoforms and they can influence protein structure and function. Upon matrix-assisted laser desorption/ionization (MALDI) most post-translationally modified peptides form a fraction of labile molecular ions, which lose PTM-specific residues only after acceleration. Compared to fully accelerated ions these fragment ions are defocused and show in reflector mass spectra reduced resolution. A short time Fourier transform using a Hanning window function now uses this difference in resolution to detect the metastable fragments. Its application over the whole mass range yields frequency distributions and amplitudes as a function of mass, where an increased low frequency proportion is highly indicative for metastable fragments. Applications on the detection of metastable losses originating from carboxamidomethylated cysteines, oxidized methionines, phosphorylated and glycosylated amino acid residues are presented. The metastable loss of mercaptoacetamide detected with this procedure represents a new feature and its integration in search algorithms will improve the specificity of MALDI peptide mass fingerprinting.  相似文献   

9.
The 2-nitrobenzenesulfenyl (NBS) method, which is useful for quantitative proteome analysis, is based on stable isotope labeling of tryptophan residues with NBS chloride ((12)C(6)-NBSCl or (13)C(6)-NBSCl). We found that 3-hydroxy-4-nitrobenzoic acid (3H4NBA) is a more suitable matrix than 2,5-dihydroxybenzoic acid (DHB) for detecting NBS-labeled peptides by MALDI-quadrupole IT (QIT)-TOF MS . Furthermore, NBS-labeled peptides were selectively ionized and detected in a mixture of NBS-labeled and unlabeled peptides. Labeled paired peaks were easily detected without enrichment, nonpaired labeled peaks were clearly distinguished from unlabeled contaminating peptides, and nitrotyrosine-containing peptides were also selectively detected on the 3H4NBA matrix, while by-product-peaks arising from nitrobenzene moieties were suppressed. The use of 3H4NBA as a comatrix with CHCA improved the sensitivity of detection while substantially retaining the selectivity of 3H4NBA. The 3H4NBA matrix offers great advantages in terms of simplicity, sensitivity, and usability when used for the NBS method and for MALDI-TOF MS analysis applied to compounds having a nitrobenzene ring.  相似文献   

10.
11.
The quantization of glycated isoforms of hemoglobin has been increasingly used in clinical practice in recent years. Glycated hemoglobin is currently considered the most important measurement for long-term control of the glycemic state and it has become a reference tool for the management of diabetes. Glutathionylated hemoglobin is an increasingly clinically relevant covalent adduct of glutathione with beta chain of the globin and its concentration has been correlated with oxidative stress. We have developed an innovative technique based on linear mode matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for quantitative analysis of hemoglobin species. This method was applied to the quantification of glycated and glutathionylated hemoglobin. A rigorous comparison was pursued to evaluate the analytical performances in quantifying glycated hemoglobin in comparison to an established high-performance liquid chromatography method. Our results indicated a complete equivalence between the two methods. The same analysis enabled the quantitative determination of the glutathionylated hemoglobin fraction. This isoform was investigated in an adult Italian population (184 individuals, 101 males and 83 females), indicating a bimodal distribution of this species. In fact 65.22% of screened individuals had glutathionylated hemoglobin levels lower than 0.50% while 34.78% had glutathionylated hemoglobin levels higher than 0.50%. A semiautomatic robotic procedure was developed for fast analysis of a large number of samples. This is the first report of a quantitative application of linear MALDI-TOF mass spectrometry for the determination of glutathionylated hemoglobin in blood samples. This method allows fast screening of this hemoglobin isoform, therefore opening the route to explore its specificity and sensitivity as a molecular biomarker.  相似文献   

12.
Infections caused by filamentous fungi have become a health concern, and require rapid and accurate identification in order for effective treatment of the pathogens. To compare the performance of two MALDI-TOF MS systems (Bruker Microflex LT and Xiamen Microtyper) in the identification of filamentous fungal species. A total of 374 clinical filamentous fungal isolates sequentially collected in the Clinical Laboratory at the Beijing Tongren Hospital between January 2014 and December 2015 were identified by traditional phenotypic methods, Bruker Microflex LT and Xiamen Microtyper MALDI-TOF MS, respectively. The discrepancy between these methods was resolved by sequencing for definitive identification. Bruker Microflex LT and Xiamen Microtyper had similar correct species ID (98.9 vs. 99.2%), genus ID (99.7 vs. 100%), mis-ID (0.3 vs. 0%) and no ID (0 vs. 0). The rate of correct species identification by both MALDI-TOF MS (98.9 and 99.2%, respectively) was much higher compared with phenotypic approach (91.9%). Both MALDI-TOF MS systems provide accurate identification of clinical filamentous fungi compared with conventional phenotypic method, and have the potential to replace identification for routine identification of these fungi in clinical mycology laboratories. Both systems have similar performance in the identification of clinical filamentous fungi.  相似文献   

13.
Mass spectrometry is a potentially attractive means of monitoring the survival and efficacy of bioaugmentation agents, such as the dioxin-mineralizing bacterium Sphingomonas wittichii strain RW1. The biotransformation activity of RW1 phenotypes is determined primarily by the presence and concentration of the dioxin dioxygenase, an enzyme initiating the degradation of both dibenzo-p-dioxin and dibenzofuran (DF). We explored the possibility of identifying and characterizing putative cultures of RW1 by peptide mass fingerprinting (PMF) targeting this characteristic phenotypic biomarker. The proteome from cells of RW1--grown on various media in the presence and absence of DF--was partially purified, tryptically digested, and analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mascot online database queries allowed statistically significant identification of RW1 in disrupted, digested cells (P < 0.01 to 0.05) and in digested whole-cell extracts (P < 0.00001 to 0.05) containing hundreds of proteins, as determined by two-dimensional gel electrophoresis. Up to 14 peptide ions of the alpha subunit of the dioxin dioxygenase (43% protein coverage) were detected in individual samples. A minimum of 10(7) DF-grown cells was required to identify dioxin degradation-enabled phenotypes. The technique hinges on the detection of multiple characteristic peptides of a biomarker that can reveal at once the identity and phenotypic properties of the microbial host expressing the protein. The results demonstrate the power of PMF of minimally processed microbial cultures as a sensitive and specific technique for the positive identification and phenotypic characterization of certain microorganisms used in biotechnology and bioremediation.  相似文献   

14.
Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques.  相似文献   

15.
A high-throughput method is described for quantitative analysis of phospholipids. The method comprises extraction of lipids, addition of the internal standard N-trifluoroacetyl-phosphatidylethanolamine, and final analysis using matrix-assisted laser desorption ionization mass spectrometry. Quantitative data are obtained by calibration directly in the sample matrix. Calibration with one phosphatidylcholine was found sufficient for quantification of all major phosphatidylcholines tested. The method is very sensitive, has broad application, and is easily applicable to any biological sample. The detection limit for phosphatidylcholines was clearly below 2 μg on the spot, requiring less than 4000 cells corresponding to about 1.6 μg cell dry mass.  相似文献   

16.
Normal sera contain a large number of naturally occurring autoantibodies which can mask important disease-associated ones. Western blotting has evolved as the most important tool to demonstrate autoantibodies in autoimmune diseases, because of its ability to simultaneous screening for a wide spectrum of different antigens. In previous studies we have shown the diagnostic potential of the analysis of autoantibodies in autoimmune diseases by means of multivariate statistics and artificial neural networks. However, the Western blotting procedure remains very time-consuming and is also limited in sensitivity. Therefore, we used an on-chip approach for the analysis of autoantibodies. This ProteinChip system uses ProteinChip arrays and SELDI-TOF MS (surface-enhanced laser desorption/ionization-time of flight mass spectrometry) technology for capturing, detection, and analysis of proteins without labelling or without the need of chemical modification. The microscale design of the arrays allows the analysis of very small quantities of proteins. In the present study, we used arrays with biologically activated surfaces that permit antibody capture studies. Protein-A-Chips were incubated with sera of patients (n = 12). After washing, the chips were incubated with a complex solution of autoantigens and subsequently washed again. If the Protein-A bound autoantibodies recognized their antigens, these proteins could be separated by their molecular masses and were to be detected by mass spectrometry. Previous studies using monoclonal antibodies have demonstrated that the detection limit is in the attomole level. Furthermore, all sera were analyzed by conventional Western blotting for direct comparison. In the present study, we have shown complex on-chip antibody-antigen reactions. At higher molecular weights (> 30 kDa) the detection sensitivity of this on-chip method was comparable to conventional Western blotting. At lower molecular mass, the Western blot technique is easily exceeded by the on-chip method. Considering that this on-chip procedure is quite easy to use, is much less time-consuming than Western blotting, and is much more sensitive at least in the low molecular weight range, the SELDI-TOF technology is a very promising approach for the screening of autoantibodies in autoimmune diseases. Due to its versatility, this on-chip technology could allow the large-scale screening for complex autoantibody distributions for diagnostic purposes and early detection of autoimmune diseases might be possible.  相似文献   

17.
Variations in the mass spectral profiles of multiple housekeeping proteins of 126 strains representing Salmonella enterica subsp. enterica (subspecies I), S. enterica subsp. salamae (subspecies II), S. enterica subsp. arizonae (subspecies IIIa), S. enterica subsp. diarizonae (subspecies IIIb), S. enterica subsp. houtenae (subspecies IV), and S. enterica subsp. indica (subspecies VI), and Salmonella bongori were analyzed to obtain a phylogenetic classification of salmonellae based on whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometric bacterial typing. Sinapinic acid produced highly informative spectra containing a large number of biomarkers and covering a wide molecular mass range (2,000 to 40,000 Da). Genus-, species-, and subspecies-identifying biomarker ions were assigned on the basis of available genome sequence data for Salmonella, and more than 200 biomarker peaks, which corresponded mainly to abundant and highly basic ribosomal or nucleic acid binding proteins, were selected. A detailed comparative analysis of the biomarker profiles of Salmonella strains revealed sequence variations corresponding to single or multiple amino acid changes in multiple housekeeping proteins. The resulting mass spectrometry-based bacterial classification was very comparable to the results of DNA sequence-based methods. A rapid protocol that allowed identification of Salmonella subspecies in minutes was established.  相似文献   

18.
Among many methods used to investigate protein/protein interactions, chemical cross-linking combined with mass spectrometry remains a vital experimental approach. Mapping peptides modified by cross-linker provides clues about proteins’ interacting domains. One complication is that such modification may result from intra- but not intermolecular interactions. Therefore, for overall data interpretation, a combination of results from various platforms is necessary. It is postulated that the secretory isoform of gelsolin regulates several biological processes through interactions with proteins such as actin, fibronectin, vitamin D-binding protein, and unidentified receptors on the surface of eukaryotes; it also has been shown to self-assemble eventually leading to the formation of homo-multimers. As such, it is an excellent model for this study. We used four cross-linkers with arm length ranging from 7.7 to 21.7 Å and MALDI-TOF/TOF mass spectrometry as the analytical platform. Results of this study show that MALDI-based mass spectrometry generates high quality data to show lysine residues modified by cross-linkers and combined with existing data based on crystallography (Protein Data Bank, PDB) can be used to discriminate between inter- and intramolecular linking.  相似文献   

19.
Staphylococcus aureus is an important human pathogen whose pathogenesis involves the synthesis of cell wall associated virulence factors and secreted toxins with damaging effects on the host cells. Most of these pathogenic factors are synthesized in a growth-phase dependent manner as a response to environmental stress like heat, lack of nutrients or other deleterious conditions. Conventional identification of these pathogenic factors is based on Western blot analysis or enzyme-linked immunosorbent assay (ELISA) and is limited by the commercial availability of antibodies against these toxins. We report here the use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for monitoring the pathogenic factors of S. aureus. For the identification of pathogenic factors, a methicillin sensitive strain of S. aureus, ATCC-29213, was grown at 37 degrees C or 42 degrees C in brain-heart infusion broth and harvested during the early stationary phase of growth. Secreted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, enzymatically digested with trypsin and analyzed by MALDI-TOF mass spectrometry. When grown at 42 degrees C, alpha- and beta-hemolysins were found to accumulate in S. aureus supernatants while the concentration of protein A was slightly decreased. The identity of some of these toxins was confirmed by Western-blot analysis. MALDI-TOF mass spectrometry combined with sodium dodecyl sulfate gel electrophoresis represents a rapid and simple approach to characterize the virulence of S. aureus strains which seems to be particularly valuable for the identification of S. aureus exotoxins for which ELISA is not established.  相似文献   

20.
A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号